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Abstract

This thesis investigates the potential of utilizing audio signals captured by microphones
within sewer pipes to estimate sewage flow rates during heavy rainfall. Focusing on Gelsen-
wasser’s need for flow rate information to enhance their sewer management, this study
delves into data collected from experimental setups. By examining literature on fluid sound
emissions and related fields, it aims to answer the research question: "Is it possible to esti-
mate water flow in urban sewage systems using acoustical signals?". Through comprehen-
sive analysis of experimental data and methodical exploration of acoustical signals within
urban sewage systems, this study validates the feasibility of estimating water flow rates us-
ing acoustic signals. Challenges include noisy recordings, flow turbulence, and limited data
availability. Experiments employ both manual feature investigation and machine learning
techniques. Findings reveal that a combined approach does not significantly outperform
machine learning alone, while predicting flow rates varies within the range of its values
and with the available training data. Moreover, domain shifts affect precision, indicating
acoustic flow rate estimation best suits long-term, location-specific monitoring systems.
Despite potential benefits for hydraulic simulations and flood detection, further investiga-
tion into data generation and system calibration is necessary for practical implementation.
This work represents an initial step toward developing real-world flow rate estimation algo-
rithms for sewer systems, emphasizing the need for more data and improved methodologies
to enhance accuracy and applicability in mitigating flood risks.
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1 Introduction

1 Introduction

Societies worldwide face the ongoing challenge of efficiently managing their infrastructure
systems, including the crucial task of sewage management, particularly during periods of
heavy rainfall. The primary objective of this thesis is to explore the potential audio data cap-
tured by microphones installed within the sewer pipes to accurately determine the flow rate
of sewage systems during such rain events. Currently, the feasibility of achieving precise
measurements using this approach is uncertain. However, if successful, this methodology
could offer significant cost savings compared to traditional, more expensive sensor-based
systems. Furthermore, an improved monitoring system would provide the means to detect
and respond to flood events promptly, which have become a growing concern in NRW/Ger-
many since the flood events that occured in summer 2021.

By investigating the viability of leveraging audio signals for flow measurement and flood
detection in sewage systems, this study aims to contribute to the advancement of infrastruc-
ture management, ensuring the efficient functioning of vital systems, particularly during
rainfall and potential flooding.

1.1 Motivating the research question

This research project addresses the specific needs of a company called Gelsenwasser re-
sponsible for managing sewer pipes and sewage flow in the German city Gelsenkirchen.
Amongst others their task is to perform hydraulic simulations, which needs to be provided
with flow rate information which is not available to them.

For this task they have build an experimental setup for collecting acoustic data which
can be used for developing algorithms performing flow rate estimation. Developing these
algorithms is the goal of this thesis, so it can be viewd as a scientific embedding of the task
provided by Gelsenwasser, i.e. we make an effort to solve their this, but also investigate
closely related interessting problems that become apparent.

When searching for literature one finds evidence that sound emitted by fluids contains
information about its flow rate [16, 40, 3]. The precision of those estimators depends on
many factors. Two important ones are ’how much noise is contained in the recording’ and
’how turbulent is the flow’.

This circumstance gives raise to the following research question: "Is it possible to esti-
mate the flow rate of water in urban sewage systems by measuring and processing acoustical
signals recorded in sewer pipes?". To answer this question, the following sub-questions will
be investigated:

• Are the decisions and realisations concerning the experimental setup for recording
acoustical data and using it later in production made by Gelsenwasser promising?

1



1 Introduction

• Are the surroundings too noisy/chaotic for training and applying a deterministic
model? Can an automated filtering of the noise help with improving performance?

• How to measure and compare performances? How to decide if it is good enough
for practical applications? Obviously this depends on the application in mind, but
what underlying assumptions will we chose for this thesis such that the results are of
practical use for Gelsenwasser? They are interested in detecting heavy rain events, so
the first objective is than: Can we differentiate regular and heavy rain events? How
well can we do that? Where to set the decision boundaries?

1.2 Data availability

When the project of this thesis started some data was already available. It was provided by
Gelsenwasser, since they already worked on acoustically estimating the flow rate in urban
sewage systems for a few years before we joined working on it. The data was gathered
without our input and feedback, so their decisions implicitly influence the direction of this
work, since the data will be the basis for all of our experiments.

From the beginning of this work there was the labeled data of three rain events from 2021.
We were provided with further data in Autumn 2023, where one of them turned out to be
not usable, due to some technical problems during recording. The other one being recorded
at a second location, allowing for evaluating performance changes under domain/location
shifts of the developed model1.

It is worth noting that the above mentioned objective of Gelsenwasser to differentiate
regular from heavy rain events needs data for both types of events. In the end we only had
one event of heavy flow. So it is to be expected that the analysis (especially the data driven
analysis) of those events will be less robust and reliable.

1.3 Relying Hypotheses

Since there is no literature for this exact scenario, the literature for related fields was re-
viewed. We attempted to examine some of the hardware related decisions like using cheap
microphones instead of expensive ones and applying automatic gain control, but also re-
viewed the results of experiments conducted in other comparable fields and what method-
s/algorithms were used. Furthermore we checked how water resource technicians usually
do their monitoring.

In the literature most of the work had the capabilities to produce more data when it
was needed and they had the capabilities to modify the surroundings to reduce the amount

1This supplementary data was not announced by Gelsenwasser in advance, so we did not take them into
account for the initial planing phase. This is why there are two sections for experiments, since the new
data opened up more possibilities for experiments previously not possible.
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1 Introduction

of noise. While both is not the case here, which suggests worse performance as the one
achieved in the literature, their results can be used as a first benchmark in terms of ex-
pectable performance.

So in the body of this work we try to state as explicitly as possible on what hypothesis
the literature relies on and carefully decide if for our application the same assumptions can
be made. If it is the case, comparable experiments are performed with the hope of reaching
comparable results.

1.4 Experimental design

The experiments performed here aim to explore different approaches and techniques. On
the one hand we performed experiments focusing on manual investigation of human un-
derstandable features and on the other hand we used machine learning methods (whose
decision finding processes are in general not interpretable by humans.).

When the limitations of these approaches for solving the task provided by Gelsenwasser
were reached, we started exploring different objectives, like the already mentioned investi-
gation of domain shifts. For that we staid within similar techniques as the previous experi-
ments to maintain a degree of comparability.

1.5 Outline

The rest of this thesis is structured in the following way: Section 2.1 will present the initial
motivation of Gelsenwasser, to precisely define the objective of this thesis. Then, Section 3
will review the literature and set the direction of the experiment design. After that Section
4 will define and refer to the theoretical background of the used and proposed methods
followed by the experiments aiming at solving the task provided by Gelsenwasser, Section
5. After that Section 6 will continue with experiments focusing on certain flow rate regions
and domain shifts . In the end Section 7 will summarise our conclusions complemented
by Section 8 drawing an outlook for further investigations. Section 9 is the appendix, here
mainly used for storing images that would otherwise interrupt the flow of reading when
kept in the main text.

3



2 Gelsenwasser

2 Gelsenwasser

Gelsenwasser (GW)2 is the company that raised the research question. The following sec-
tion presents the motivation that led to the investigations made in this thesis and the data
acquisition of experimental data carried out by GW.

2.1 Motivation

Lets tell the story of how the question of using acoustic signals for flow estimation came
up, because it already gives insights about what the developed technology needs to be used
for later.
It will also help to deviate from the business goal and focus on the research question and
explain why the data available for experiments is the way it is.

Gelsenwasser works on hydraulic calculations for sewer networks. These calculations
aim to simulate the sewage system under load. In this case load refers to a large amount of
liquids flowing through the network. In their calculations they try to determine where jams
are likely to occur and what consequences this has for the entire city (e.g. to predict where
water accumulates). That way they can locate potential problem areas in the infrastructure.
This may be helpful for preventing problems by informing the cities about it so they can ei-
ther work on their infrastructure directly, or are better informed in moments of emergency.
One particular application would be a warning system for early detection of flood events so
work forces can react accordingly.

For that simulations to work properly they need a digitized version of the entire sewer
network. Usually their clients (cities, local authorities, communities) maintain datasets
containing information about those systems, however with a different focus. Such datasets
contain the location, length and diameter of the tubes and shafts, where they come together
and other features. These features are captured to estimate the quality of the network such
that their customers know when and where to renovate and improve on the system, since
that drives expenses.

However, for hydraulic calculations three quantities are necessary: Position (where lies
the tube and in what direction does it go), diameter of the pipe, and its slope. According
to GWs own information, the slope is never present in those datasets. The reason for that
may be that it is irrelevant for the state of the system. Cities, etc. care about when and
where they have to repair parts of the network. Slope does not seem to correlate with this
property a lot, so they do not make the afford to collect it. This complicates the work of
GW. Without that information their calculations seem to be not very useful.

This leaves GW and many others with insufficient amount information to properly do

2Their official website: https://www.gelsenwasser.de/

4

https://www.gelsenwasser.de/


2 Gelsenwasser

hydraulic simulations. So it is up to them to collect the data themselves. Scanning through
the entire network is highly impractical. For that they need to build up a team that drives to
every man hole and measures slopes. To do this, streets need to be blocked, which has to be
communicated and planned with the city. Moreover, note that even going into every man
hole will not cover the entire system, but it is the closest one can get. Since scanning the
network manually is not a satisfying option, they need another way to determine the slope.

2.1.1 Importance of the slope

The reason why the slope is so important is because the velocity of the liquids flowing
highly depends on the slope. It is intuitive that a steep slope would allow for more flow.
This of course saturates as soon as the tube fills up.

So another way of estimating the slope is by measuring the velocity of the liquids, which
in this text will be referred to as flow rate. Since most of the time the situation is calm
and under control, measuring the flow rate is only possible during rainfall. This measured
flow rate can then be compared to the one predicted by the simulation. This way the sim-
ulation can be re-calibrated and improved over time when it deviates from the measurement.

Apart from being dependent on the weather, another drawback of this technique is that
taking measurements inside of sewer pipes is difficult and thus expensive. According to
GW, a single sensor (e.g. CSM Korrelations-Keilsensor by NIVUS GmbH) costs roughly
between five and seven thousand euros. The act of mounting them is of similar order of
magnitude. This is not feasible for many kilometers, since they expect a need of 100 to 300
sensors.

Such sophisticated commercially available sensors offer a precision that is often not nec-
essary for calibrating the simulations, usually they provide a precision of several liters per
second.
In the moment of interviewing for this thesis GW used three categories of states a pipe can
be in: Dry weather condition (no rain), average rain condition and roughly filled to the top,
during heavy rain events.
This rough classification already improves their hydraulic calculations significantly, which
proofs the exuberance of high precision instruments for this particular application. If higher
precision is needed, it can be iteratively improved further by refining those categories, de-
pending on the accuracy of the sensor and needs for the calibration.

For the reason stated above, companies like GW are interested in cheap sensors that
only roughly estimate the flow rate. So the cost of the sensor itself should be low as well
as mounting them. They say it is even within the resources if some of those sensors are
calibrated by a more expensive sensor or if the sensor needs a longer duration (years) to
calibrate itself over time.

5



2 Gelsenwasser

2.1.2 Filling level is not enough

One idea might be to use cheap distance measuring devices based on contact less radar
emission and detection. Measuring only the filling level is not enough. This section will
explain why.

Measuring the filling level can be done densely in sewage networks, because such sen-
sors are cheap. They rely on radar or ultrasound and are often used for bulk materials or
water levels in general. Depending on the application they are indeed used in sewer sys-
tems, however, for flow rate this is not enough and here is why:
It is possible to have backlog in sewer pipes, since there is not just water going through
them. Such jams cause higher levels but not higher flow rates. In fact it could actually
stagnate entirely and have zero flow at all. Although detecting jams is also an important
source of information when monitoring the capacity utilization of a sewage system, it will
not help in measuring flow rates.

GW proposed to utilize acoustic sensors to differentiate between filled pipes with flow
and filled pipes without flow. It is intuitively clear that those two events would sound differ-
ently. This brought up the idea of combining the filling level measurement with measuring
the sound of it.

For the further discussion it is important to differentiate between two objectives one
might have in mind when designing acoustic systems for flow rate estimation:

• The first objective is to use the acoustic data in combination with other sensors like
the ones using the fill level or other sensors that measure the amount of rain that falls
on the ground.

• The second is to ask the question if and how well measuring only acoustical signals
can be used for estimating flow rates in sewer pipes.

In this work the focus lies on the second objective as a research question. It is to be ex-
pected that adding information by gathering more data and performing sensor fusion might
improve the performance. However, this question was not studied here. Furthermore, this
work will not go into detail how the above mentioned early warning system could be set
up utilizing the acoustic sensor network. This objective would be out of scope for this work.

The next section will present the experiments related to measuring acoustical signals for
flow rate estimation that have been conducted by GW. This will serve as an introduction
into the dataset available for the experiments carried out in this thesis.

6



2 Gelsenwasser

Figure 2.1: NivusFlow measuring device inside a sewer pipe.

2.2 Data collection/description

2.2.1 Experimental setup

GW already did some experiments by measuring sound inside of sewer pipes. The purpose
of their experiments was mainly to generate labeled data, to investigate the feasibility of
using acoustic sensor measurements for estimating flow rates. In this case labeling refers to
measuring with two devices at the same time. The second sensor was an expensive industry
standard for measuring the flow rate.

The device used by them is called NivuFLow Mobile, a mobile solution form NIVUS GmbH
for flow monitoring inside partially and entirely filled pipes. It consists of a waterproof box
that contains the battery and electricity and the sensor. In Figure 2.1 one can see a box con-
nected to the sensor with a blue cable. In Figure 2.2 one can see how the sensor is mounted
inside the sewer pipe within the liquid flow, being connected to a blue cable. More details
on the expensive sensor can be found in Section 3.1.3.

Next the prototype of GW for an acoustic flow rate sensor will be presented. Figure 2.3
shows how they look like from the outside.

7



2 Gelsenwasser

Figure 2.2: Sensor inside the sewer pipe connected to the NivuFlow Mobile Box.

The sensor was build by GW in collaboration with an external company, which has more
experience with building prototypes.
Their prototype consists of a low-cost microphone that costs less then one euro inside a
small pipe to protect if from damage caused by external forces (dirt, wetness, hitting against
some obstacle). This small pipe is connected by a cable (in Figure 2.3 both are grey) to an-
other box (in Figure 2.3 the black one) that contains the electronics and power supply. The
power is supplied by a lead battery and is designed to provide the electronics with power
for up to three weeks. The cable that connects the microphone to the box has a length that
allows to directly place the box below the man hole. The box can be directly placed below
the man hole, while the microphone is close to the flowing water.

The electronics consists of a Raspberry Pi Zero with a SD Card, an analog to digital
converter (ADC) and a LoRaWAN chip for Wireless communication.
This setup is designed to prepare more functionality that could be used in future experi-
ments. At the time the measurements available for this thesis were collected, the Raspberry
Pi was only used to receive the data coming from the ADC, which was connected to the
microphone and storing it directly on the SD card in a .wav format.

The LoRaWAN Chip could further be used for remote configuration, control and data

8
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Figure 2.3: Boxes containing all the electrical elements.

transmission. The Raspberry could be idle the entire time and only start measuring (and
supplying power to the ADC) after a remote signal was send. LoRaWAN could also be
used to synchronise the time between the ground truth measuring device and the Raspberry
and/or other Raspberries. It could even be used to send the predicted flow rate, so some
server would collect the data and store and/or analyse it. The last scenario is often called
edge computing in the Internet of Things (IoT) scene. Since LoRa uses only a small band-
width it could only send features online, the raw data would be too much.

GW took several places into consideration for mounting their prototype. In the end they
chose a larger pipe with a diameter of one meter since they were interested in heavy rain
events. Sewer pipe systems can be thought of branches of trees. They consist of many
smaller pipes that come together to bigger ones, which finally ends in a single big one. For
the measurements they decided for a bigger one, because here many branches already came
together so the probability to observe high flow rates is higher.

The process of mounting involves preparation. A street needs to be blocked for that time.
Such activities have to be communicated beforehand with the city council. GW has build
five prototypes. To have some redundancy while measuring they mounted three of those
boxes each a single sewer pipe, see Figure 2.4. One observation was that it does not make a
large difference when one compares the signals of different devices. Even though the exact
location, especially the distance to the flowing water, of the microphones is different. This
means that the process of mounting does not require much detailed adjustments.

When the experiments were made GW noticed that the Raspberry shuts down after 3 to
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Figure 2.4: Three prototypes inside the man hole.

4 days. This is surprising, because it is supposed to last up to three weeks. They assume
that the Raspberry has some automatic shutdown functionality that is supposed to recognise
the final discharge voltage of its power source to initiate a proper shutdown to prevent data
lost of failures. The assumption now is that the Raspberry is a bit too sensitive and gets
triggered to early. However, this is only an assumption, there might be a different reason
why this happens.

GW gathered data from 11.07.21 to 28.12.22 (1.5 years). For that period of time they
have continuous measurements from the NivuFlow device and some measurements made
by the prototype. In Figure 2.7 one can see this history. The green and yellow boxes indi-
cate events where measurements from the prototype are available. For this thesis only the
first three of them were provided: (14.07.2021, 28.07.2021, 28.09.2021). These three cases
already cover all relevant scenarios: > 200 l/s, < 200 l/s, the special 1000 l/s case and al-
most no flow. The last scenario is covered by all the recordings, since the recording sample
start with quiet conditions until the rain/flow event occurs and it ends in quiet conditions
again.

In Figure 2.7 one can also see that relevant events are rare. There is only one event with
1000 l/s and only five events with equal or higher 400 l/s. This sparsity of relevant data
already hints at problems in the training process later on.
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Figure 2.5: Gws box inside the sewer pipe. This is one way the data was collected.

2.2.2 Dataset description

Next the data available for experimentation is presented: The next section in part summa-
rizes the findings found in the lab course [19] where I already worked on a subset of the
data, but with the objective of detecting anomalies as a noise extraction method.

The dataset comprises information that was gathered over the course of four days mea-
sured at one location. Audio recordings were taken every ten minutes, with each recording
lasting for a duration of 10 seconds. Additionally, for some of these days, the flow rate was
measured every five minutes. Each folder contains a maximum of 420 .wav files that have
a sampling rate of 48 kHz. In total, there are 1169 .wav files that occupy approximately 1
gigabyte of space.

A random subset of data was inspected in order to obtain an initial impression of it. The
corresponding audio was listened to and their spectra were examined. Figure 2.8 displays
some of the spectra that were chosen carefully.

It was observed that some of the audio files were corrupted by white noise, either for short-
term interruptions or for the entire ten-second period. There were also very short transients
in the signal, and the number of these peaks varied from file to file. Some files contained
only a few of these peaks, while in others it was difficult to distinguish them from pure
white noise.
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Figure 2.6: How the recording setup looked from outside the sewer pipe.
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Figure 2.7: The measuring history of the prototype and the NivuFlow device. The green
and yellow boxes indicate events where measurements from the prototype are

available.
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Figure 2.8: Some examples for noise contained in the dataset. upper left: no noise, upper
right: many crackle sounds, lower left: close to white noise, lower right: short

term white noise events.
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Interestingly, the presence of these peaks and white noise events could be visually de-
tected by the fact that much energy of the signal was contained in frequencies above 20
kHz. This suggests that these events were not directly related to the sounds transmitted by
the liquid flow, as normal recordings do not contain any energy above 20 kHz. However, it
is possible that they were indirectly related to it, as they could be caused by clipping during
the recording. As a result, the occurrence of these distortions could be used as an indicator
of high flow rate. More Discussion on this later.

In addition to the white noise distortions, there were other short-term events present in
the data, such as drip sounds, car wheels, car brakes, and even a siren. The corresponding
spectrograms of them are depicted in Figure 2.9. However, most of the samples remained
constant during the entire 10 seconds. Furthermore, there were some subtle artifacts in the
recordings, such as a constant received signal below 20 Hz or the application of compres-
sion with a release time of around half a second for loud short-term events. It was also
observed that the drip sounds were almost entirely covered by the recordings of one partic-
ular measuring day, which could be due to some specific object that got stuck in the pipe
and, therefore, exhibit a different characteristic sound in general instead of a rare occur-
ring event in that case. This suggests that the acoustic situation will vary strongly between
different locations, and a thorough calibration may be necessary for each location.

Figure 2.9: Some examples for noise in the dataset, caused by external sound sources.
upper left: break of a car, upper right: siren (see the bottom part), bottom:

click sounds (there one can notice the auto-gain).
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2.3 Data Overview and Assumptions

In this section, we will provide an overview of the ground truth data used in our study, in
the following called Nivus data, because Nivus is the name of the company that has build it.
We have access to data from five distinct events, recorded at two different locations. Note
that until now we only showed three events and one location. This is because two events
were provided much later.

2.3.1 Nivus Data

The following list enumerates the flow rate recordings made by the Nivus device during
these five events:

1. Event 1, which occurred on 29.09.2021, starting at 11:01 at location Ueckendor-
fer_Str 2.10.

2. Event 2, which occurred on 14.07.2021, starting at 23:01 (Ueckendorfer_Str) 2.10.

3. Event 3, which occurred on 27.07.2021, starting at 16:46 (Ueckendorfer_Str) 2.10.

4. Event 4, which occurred on 12.08.2023, starting at 14:00 at a different location
(Holtkamp) 2.11.

5. Event 5, also occurring on 12.08.2023, starting at 14:00 again at the first location
(Ueckendorfer_Str) 2.11.

A few observations can be made from Figure 2.10 and 2.11, which provide insights into
the characteristics of the recorded events:

• Different maximum values can be observed. Event 1 exhibits a peak flow rate of
100 l/s, while event 3 reaches 1000 l/s. This discrepancy in peak values suggests
variations in the intensity of the rainfall events.

• The recorded events also differ in terms of their durations, both in the number of data
points used for recording (400 data points) and the duration of high-flow moments.
This variation may be indicative of the temporal characteristics of the events.

• Furthermore, the curves representing these events exhibit diverse patterns. Some
events display longer periods of increased activity, suggesting sustained high flow
rates, while for others, this high flow period lasts for only a few minutes. This di-
vergence in the course of the curves may hint at variability in the responses of the
studied system to different rainfall events.
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Figure 2.10: Flow rates for Event 1, 2, 3.

• Notably, the last recording appears to be a flattened version of the one above, with
different maximum values. According to GW this phenomenon is not unusual and
can be attributed to the influence of precipitation characteristics on the channel hy-
drograph’s shape. Depending on flow times and the size of the sewer pipes , different
levels of damping (stretching of the curve) or intensity (larger catchment area leading
to higher amplitude) may occur. This variability is influenced by the specific location
in the network where the rainfall runoff is being measured.

• Lastly, it is worth noting that the last two recordings share the same datetime in
the database. According to GW, this is likely because these recordings were indeed
measured simultaneously in two different locations.

Overall, these observations underline the complexity and variability of hydrological re-
sponses to different rainfall events, emphasizing the need for a nuanced understanding of
the system’s behavior under various conditions.

2.3.2 Data Consistency

We encountered certain challenges regarding data consistency, particularly in the synchro-
nization of timestamps:
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Figure 2.11: Flow rates for Event 4, 5.

• Inconsistencies in the naming of event dates were noted. The folder dates containing
audio recordings did not always match the dates mentioned in the corresponding CSV
file names, leading to some confusion in the labeling of events.

• Another inconsistency was observed in the number of audio files compared to the
number of rows in the CSV files. Some events had more recordings or labels than
others, indicating potential synchronization issues.

Despite these labeling inconsistencies, the data source assured us that the assignments
in the CSV files are accurate. While the labeling may be confusing, the data’s quality and
the experiments performed on it are not significantly affected. It’is important to note that
acquiring data of this nature is challenging, and efforts were made to ensure the data’s re-
liability. The main takeaway from this is that initial care scales better than fixing problems
like this afterwards.

The interpretation of the data presents some challenges, primarily because we lack in-
formation about rainfall events from other sensors or sources. Therefore, it is not always
clear if rainfall was the sole cause of the observed events. For example, the first event’s
cause remains uncertain. In contrast, the second event on 14.07.2021 is attributed to a well-
known flood event in NRW/Germany [12]. The third event, with a flow rate of 1000 l/s,

17



2 Gelsenwasser

is likely associated with rainfall, as this magnitude exceeds what household and industrial
discharges could produce at that location.
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3 Literature Review

This section will give the necessary background needed to understand the problem at hand,
what has already been done by other researchers and findings from similar research fields.

To the best knowledge of the author, at the time of writing this thesis there was neither
work published in journals/conferences nor preprints directly addressing the task of esti-
mating flow rates in sewer pipes using acoustical data. However, there were two closely
related questions with existing literature to look for to learn more about this problem:

What challenges do water resources technicians, infrastructure and utility companies
face when they need to monitor their systems?

and

Are there other applications, where acoustic sensors are used to capture the sound of
liquids flowing for estimating flow rates?

In the following, these two questions will be investigated in two separate sections followed
by a third one with other related work.

3.1 Challenges for infrastructure and utility companies

The information presented in this section is mainly drawn from a Water Environment Fed-
eration Fact Sheet [41], an article by Short Elliott Hendrickson Inc. [25] and from meetings
with experts from Gelsenwasser3. In the following, explicit citations are only made when
those three sources deviated in point of view from each other or when another resource was
used.

3.1.1 Why flow estimation in sewer pipes

Monitoring the flow plays a vital role in assessing and characterizing flow conditions in
sanitary sewer collection systems. The real-time utilization of this data has become increas-
ingly crucial for decision-making, optimization, maintenance, and regulatory compliance
within the industry. Tackling flood events is another crucial motivation. Monitoring the
behavior of sewer systems under load can help to identify and locate trouble zones early
and prevent some of the damage. Depending on the exact infrastructure it might also help
during a flood event. However this is of less relevance, because during a flood the biggest
thread is on the street.

The exact purpose of monitoring is highly application-dependent. Usually there are clear
objectives and expectations causing the investment of installing monitoring hardware, such
as preventing flood and damage or examining the condition of a sewer system.

3Note that much of their situation has already been presented in section 2.1
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Depending on the purpose, one needs to choose between a permanent or temporary setup.
For the temporary setups, the timing and duration has to be determined. For example a tem-
porary setup aimed at monitoring the flow rate during rainfall is best suited during seasons
with higher probability of rain. Another relevant parameter is the placement of the devices.
How many sensors shall be used or how dense shall the sewer system be covered by sensors.

It is an industry-wide standard that rainfall is measured separately using dedicated sys-
tems or external services/companies. Getting this right increases the quality of the data.
This is especially true for the monitoring of so-called rainfall derived infiltration and in-
flow (RDII). Infiltration refers to the unintended entry of external water into sanitary sewer
systems due to structural deficiencies or aging. Inflow refers to the unintentional entry of
external water into sanitary sewer systems from sources such as rain water, private property
drainage, or other external sources, often times abbreviated by I/I.

The next section will depict a concrete example of wastewater analysis. It will show how
monitoring the flow rate can be used as a tool in this context.

3.1.2 Flow Monitoring and Analysis in Sewer Systems, Colombia

Carlos-Alexis Bonilla-Granados et al. published their wastewater analysis in a journal
called Respuestas [6]. The main objective of their research is to estimate the factors specific
to the sanitary sewerage system of San José de Cúcuta, a city in Columbia. They measured
and computed them and discovered that the used model overestimates the capacity needed.
Although those factors and their main findings are not directly relevant for this thesis, their
work is presented here for two reasons: First, to get a first impression of the order of mag-
nitude for the properties one deals with, when working with wastewater systems. Second,
to show a concrete example of how monitoring flow rates in sewer pipe systems can solve
real world problems. Readers more interested in the motivation behind such investigations
are encouraged to read their paper. Here only the circumstances are outlined.

The selected area of investigation in Cúcuta was roughly 1.7 km2. Wastewater coming
from this area flows through the pipe where the measuring devices are installed. This order
of magnitude for the area that captures the rain can roughly be considered a similar order of
magnitude for the data from GW. The monitoring in Cúcuta was conducted for 19 weeks,
24 h per day. For the measuring an ultrasonic flow meter with data logger was used. For
more information about such devices see Section 3.1.3. The flow was measured in units of
[m3/h].

Figure 3.1 shows the total value of the aforementioned monitoring data of wastewater
flow in the sewage system. For this image they decided to show the highest value of the day.
The days with significantly higher values correspond to rainfall events. The frequency of
occurring rainfall events highly depends on the geographical location of the city. However,
the estimation of roughly 10 out of 150 days (so 15 %) is of a similar order of magnitude for
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regions managed by GW. Also note that events where the system is under high load (more
than twice as much flow as the ground level) are very rare (1 out of at least 150 events,
so less then 1 % of the days). Hence, it is to be expected that algorithms that rely on data
recorded at events of (possibly) maximum load of the system might take a long time to get
calibrated, because such data is rare.

Figure 3.1: Monitoring of wastewater flow (max value of the day) in the sewage system of
Cúcuta during the measurement period. Source of image:[6]

Figure 3.2 shows the daily variation of wastewater flow in the sewage system during dry
weather conditions. Again the exact values will deviate depending on the location, but the
relative slope of change in value and and variance between the different days will look sim-
ilar.

In summary, good monitoring of one city can simplify setting up a similar system in
another sity. This is especially true for flood events, since they happen relatively rarely
per city (at least for German cities it is less than once every 10 years). It is typical to
try to estimate properties that cannot be measured due to absence of information. More
conclusions are drawn in the end of Section 3.1.

3.1.3 Measuring equipment

Following the assessment of [41], here is a non-exhaustive list of currently used methods
depicting some of their strengths and weaknesses:
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Figure 3.2: Daily variation of wastewater flow in the sewage system of Cúcuta during dry
weather conditions in the measurement period. Source:[6]

Ultrasonic sensors are widely employed for non-contact flow rate measurements. The
underlying technology is different from device to device. Some rely on the Doppler effect,
some on Time-of-Flight effects and some identify the trajectory of particles floating in the
water and estimate the velocity of the liquids by estimating the velocity of the particles.
GW used a device that utilises the third approach. Advantages of those sensors are their
high accuracy and their flexibility in terms of the sizes and materials of the pipes they are
mounted in. Also they never have direct contact with the wastewater, and thus require less
maintenance. However, their limitation is that with high turbulences and therefore bubbles
inside the pipe the accuracy drops. Furthermore, they are typically the most expensive sen-
sors.

Electromagnetic flow meters, also known as magmeters, are commonly used devices.
These sensors operate based on Faraday’s law of electromagnetic induction, which states
that when a conductive fluid flows through a magnetic field, a voltage is induced that is
proportional to the flow velocity. They are best suited for the largest pipes in use and also
reach high accuracy. Their biggest drawback though is that they are particularly difficult to
set up and don’t operate well on fluids having conductivity smaller than 20 mΩ/cm.

Pressure sensors rely on measuring the pressure difference across the pipe and then cal-
culating the flow velocity based on Bernoulli’s principle and pipe characteristics. They are
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cost efficient, simple to install and require low maintenance as they consist of few moving
parts. Limitations are that their accuracy depends on flow conditions and pipe material to
a greater amount than the other methods presented. This results in those sensors being un-
practical in some environments

The cost of these sensors lies in order of magnitude of a couple of thousand euros, with
ultrasonic sensors usually being the most and pressure sensors being the least expensive.
There are more techniques (such as so-called bubbler or float sensors), but there is no point
in discussing them in the same amount of detail, because they do not offer any benefits
over the other sensors discussed above. In practice, setups often combine multiple types of
sensors to fit individual needs. Note that the quality of the data highly depends on the execu-
tion of the building/mounting process. Proper installation and calibration of the equipment
by qualified staff following manufactures recommendations and industry standards is key.
Once this is complied, regular setup inspections are scheduled and executed. The goal
is to detect erroneous configurations (e.g. synchronisation/clock errors or battery issues)
early. The data is gathered for data analysts. Often companies use so called geographical
information systems for combining all this information to spot overall trends of the network.

Sometimes companies are only interested in the level of the water and not in its velocity.
However, this is not our objective here, since hydraulic calculations cannot be made by
level alone. For more details on why that is, see Section 2.1.

This brings us to the main point of this section: To the best knowledge of the author,
there is no industry standard for cheap - low accuracy - sensors (less than a thousand euro)
to have a rough estimator for flowing activities inside sewer pipes. It is still to be decided
if those can potentially help satisfying the listed needs of water resources technicians, in-
frastructure and utility companies. As discussed above, collecting the necessary amount of
data for data-driven algorithms takes a long time and thus is often infeasible, especially for
the task of flood prevention. This likely is the reason why hydraulic simulations are made
in the first place.

Moreover, the listed equipment has to be installed either when building the pipe or with
quite some effort afterwards by mounting devices at the bottom of the pipe, while ensuring
that there is no or almost vanishing flow. The proposed prototype by GW only needs to be
mounted right underneath a manhole cover. This makes it very easy to install and maintain
the sensors.

While using theories, models and simulations in the absence of information is a common
approach in water management investigations, there was no investigation found that the
usage of many cheap sensors combined with few high quality ones fails to improve the sit-
uation. So utilising many acoustical low-cost sensors might indeed be a promising strategy,
or at least a new niche. Also note, that some of the problems with sophisticated methods
remain a challenge in acoustical flow meters. Those are battery live and the question of
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how to transmit the data from the sensor to the controlling station.

3.2 Estimating flow rates using acoustic signals

Lets first investigate into the following key question:

Is there evidence that estimating flow rates using acoustic signals is indeed possible
with sufficient accuracy4

There are publications investigating this question as well as groups developing systems for
different applications. In the following those are quickly reviewed such that their main
findings have enough context for our investigation to draw connections.

3.2.1 Relying Hypotheses

Jacobs He et. al. [16] investigated the question if an mathematical model can relate
recorded sound of water flowing through a tap with the corresponding flow rate. The actual
flow rate was measured separately by a typical volumetric measuring device as a ground
truth for developing the model.

Figure 3.3: Results of thir sound signal amplitude analyses. The moment of saturation is
marked by the grey vertical bar. Source of image: [16]

To be more precise, the experimental setup was an outside tap with a pickup microphone
- manufactured for acoustic guitars - mounted underneath it. The water coming out of the
tap was forwarded by a hose pipe, so the sound recorded was the sound of the water going
through the tap. There were no splash sound from the water hitting the ground involved.
Furthermore the authors made special effort to filter out every unwanted external sources
of sound as for example barking dogs and detecting on- and off-set of the flowing event.

4Again, what can be considered "sufficient" depends on the objective in mind. For our investigations the
classification into three classes (dry weather, rain, heavy rain) as mentioned in Section 2.1 is enough.
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They have compared peak amplitude (in dB) and root mean squares (RMS) as ampli-
tude features first. Frequency specific features computed by the Fourier transform were
investigated too. For the amplitude they already discovered that the relation between the
amplitude of the signal and the flow rate saturates at some point. This discontinuity was
between 0.16 l/s and 0.18 l/s. This saturation behaviour of the amplitude can be seen in
Figure 3.3, with the grey vertical bar marking it.

The discontinuity caused ambiguous behavior in the amplitude. Therefore, one can con-
clude, with an application in sewer pipes in mind that treading all frequencies the same and
averaging over them might not be the most suitable feature.

For this reason they put their main attention onto five frequencies, also called modus.
This requires some effort and involves trial and error.
In Figure 3.4 (left plot) one can see one of those features. Discovering this saturation effect,
motivated features that describe what is happening with higher flow rates.

Figure 3.4: Trend lines used to estimate flow rate with DISFLOREM. Source of image:
[16]

In the end they came up with multiple models, here only the one they called DISFLO-
REM is reviewed. It is the only one presented here, because that is the one they showed
with larger detail. This model is depicted in Figure 3.5. In short, this method is described
in table 3.1.

They achieved an average error of 15 % when results were verified against five indepen-
dently recorded data points. This means, their prediction misses the ground truth by 15 %
on average. In total they collected a dataset of 60 recorded sound signals, so they used
roughly 8 % of their data for testing. Therefore we can keep the following in mind for our
own investigation: It seems reasonable to assume that in the context of the sewer pipes
the performance will be at best as good as the performance of this water tap experiment,
because we still have noise in the data and they do not have noise in the data.
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1. For a given audio sample compute the amplitude of the entire recording as
average RMS ( RMS Ave) and the peak amplitude

of the frequency 180 Hz (modus 1 : AM1) and 7999 Hz (modus 4 : AM4)

2. Check the range in which the values AM1 and AM4 lie in.

3. Depending on those values solve a linear or quadratic equation for the flow rate Q

Table 3.1: Rough steps of the DISFLOREM method by [16]. The decision tree is shown in
Figure 3.5.

Figure 3.5: Decision tree of the DISFLOREM model. The meaning of the signs can be
checked in Table 3.1 or in the original paper. The source of the equations can

be see in Figure 3.4 Source of image: [16]

Also note that they did not investigate how the learned model performs, when a tap with
different size, shape or material was used. It is to be expected that the performance drops,
when circumstances change, because the emitted sound changes entirely. More evidence
for that is discussed later in this section when we talk about the discontinuity in the model.

It is worth noting that this is not the first paper bringing up the question of estimating
flow rates utilizing sound. They refer to a work that discovered a nearly quadratic relation-
ship between the signal noise and flow rate in a pipe [9]. This however only holds within a
specific region. A similar behaviour was expected and confirmed by [16].
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This work gives a good starting point for our investigation in terms of expected accuracy,
amount and quality of data necessary, what type of audio features to consider first and what
kind of data driven methods/algorithms might serve as a starting point.

3.3 Related work on analysing acoustic signals for regression
tasks

In this section there is more work presented that utilizes acoustic signals to estimate quan-
tities from the source of emitting the sound. The purpose of this section is to get further
inspiration on possibly promising methods to try. To this end, the literature in this section
will be discussed briefly by presenting the main findings and relating them to the topic of
this thesis.

3.3.1 Flow rate estimation for agricultural sprayer nozzles [40]

Their idea is to use microphones as flow meters for nozzle tips in agricultural sprayers.
Under laboratory conditions they achieved an accuracy of 5 % relative RMSE. This would
definitely be accurate enough for our application.

Another interesting finding was that the distance between the nozzle and the microphone
did not change the accuracy a lot, once calibrated. That is also useful to know for our appli-
cation, since this relaxes the constrains on the cable connecting the microphone to the box.
There should not be much adjustment necessary. However, the change of distance required
a re-calibration.

Another useful finding was that each nozzle requires its own calibration, so it is expected,
that the sewer application will be similar. The calibration was even necessary, when they
varied the distance. This also suggests, that when unmounting the device and mounting it
again with a different location (for the most part height) of the microphone, this will nega-
tively influence the accuracy.

In their study they put a special emphasis on normalizing the numerical values before
the regression task, see Figure 3.6. The min and max values correspond to the minimum
and maximum of the tested flow rates of the particular nozzle tip assessed, respectively.
Additionally, during training, the min and max values were obtained, once again, individu-
ally for each assessed nozzle tip. This circumstance is an important detail to keep in mind
during the development of the data processing pipeline.

The last relevant finding is the comparison of high- and low-end microphones. Their
observation was that consistent results can be obtained when using a low-end microphones.
When compared to more expensive high-end microphone there is no measurable improve-
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Figure 3.6: Overall block diagram summarizing the main processing stages performed in
the study. Source of image: [40]

ment in accuracy. Therefore, there is no point in upgrading the microphone. Doing so
will not improve the prediction accuracy. This of course cannot be generalised for every
application, however, expensive microphones for the most part have higher prices, because
they were optimized for a certain application. Often this is a linear frequency characteristic
or optimization for recording voice or instruments. It may also be optimized for capturing
very quiet sounds. There the noise-poor amplification of the signal is equally important.
All those adjustments in the microphones properties do not seem to relate to the scenario
of sewer pipes.

Indeed, the last observation turned out behave the same way for the context of sewer
pipes, because this behaviour was confirmed by experiments done by GW.

3.3.2 Varying liquid jet stream onto a free surface [3]

This paper investigates the sound produced by water jets falling into a pool to predict the
flow rate and trajectory. Two methodologies are explored: Utilizing machine learning mod-
els trained on audio features extracted from the collected sound to predict flow rate and
trajectory, or directly acoustic parameters associated with spectral energy for flow rate tra-
jectory estimation.

The paper compares the effectiveness of these approaches against the actual flow rate,
demonstrating their alignment and accuracy in predicting flow rate trajectory.

Their investigations motivate that utilising machine learning methods without much pre-
processing might be a promising strategy as well. However, note that their dataset is much
larger than the one we have available and their dataset represents the underlying distribution
well, since they can just produce more data if it is needed.

3.3.3 Acoustic vehicle speed estimation [53]

This study focuses on estimating vehicle speed using acoustic measurements from a single
sensor. A novel feature, dependent on speed and derived from sound amplitude attenuation,
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is introduced. This speed-dependent feature is extracted from audio signals and utilized as
an input for a regression model aimed at speed estimation.

To facilitate this investigation, a dataset comprising annotated audio-video recordings
of single vehicles passing by a camera at consistent known speeds has been collected, an-
notated, and made publicly available. The dataset encompasses 304 recordings captured
in urban environments, featuring ten distinct vehicle types. The proposed method is both
trained and evaluated on this compiled dataset.

Experimental results indicate the method’s efficacy in accurately predicting the moment
a vehicle passes by and estimating its speed, achieving an average error of 7.39 km/h. Dis-
cretizing speed into 10 km/h intervals, the proposed technique attains an average accuracy
of 53.2 % for correct interval prediction and 93.4 % accuracy when allowing for misclas-
sification within adjacent intervals. Moreover, the experiments highlight the substantial
impact of sound disturbances, particularly wind, on acoustic speed estimation.

From this study we learn three main things for our investigation:

• First, keeping the noise decreases the accuracy, but only to some degree. This of
course depends on the amount of noise, but it seems comparable to our situation.

• Second, discretizing the output into classes instead of using continuous values sim-
plifies the task and allows for easier interpretability and comparability of results.

• And third, allowing for misclassification within neighboring classes, allows for ersi-
mating the amount of classification errors made by the model.

3.4 Other Related Work

3.4.1 Low-Cost Home Activity Recognition by Fogarty et al. [10]

The following paper performs a classification task on raw audio, by only recognizing the
duration of sound events. So it works with audio data, but does not perform any signal
processing like Fourier transformations, still it is similar by utilizing many cheap and small
sensors for monitoring. The objective was to develop a low cost sensor-based systems for
monitoring water use activities in daily living. For this purpose, multiple low-cost micro-
phones at locations of minimal systematical noise are used across the household (see Figure
3.7). The recordings were analysed according to the duration of disruptions in the sound
signal.

They were able to identify the following scenarios with an accuracy here given in per-
cent: 100 % of clothes washer usage; 95 % of dishwasher usage; 94 % of showers; 88 % of
toilet flushes; 73 % of bathroom sink activity lasting ten seconds or longer; 81 % of kitchen
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Figure 3.7: Scheme of the water pipes in the home. The air conditioning and clothes dryer
are shown because they rattled nearby pipes, introducing noise that needs to be

considered in analyses. The four shaded sensors are used for modeling
activities, while the unshaded sensors are included only for validating their

results. Source of image: [10]

sink activity lasting ten seconds or longer.

The work by Fogarty et al. [10] confirmed that sound could be used to obtain an indica-
tion of the water use. Even though clustering the duration of events and assigning them to
previously known events does require much less knowledge about signal processing than
estimating flow rates from the sound/timbre of a recording, this paper gives further evi-
dence that there is useful information captured in audio recordings. It also suggests that the
duration of an event contains information about it.

There is also the option of only using one sensor at a pipe just before entering the wastew-
ater system, which was done by Hu et al. [1]. They achieved to identify four water-use ac-
tivities: bathing, toilet flushing, cooking and clothes washing. The system could recognize
about 70 % of those water-use activities. This and the previous work confirm that avoiding
as much noise as possible pays off in the analysis afterwards.

3.4.2 Results of the Anomaly detection investigation

In Prior work, we investigated detecting anomalous data in the same dataset that is used in
this thesis. There we mainly focused on detecting white noise, since there are some faulty
interruptions in the data.

White noise detection worked well as an anomaly detection task, however as we will
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discover later in this thesis, white noise is an important indicator when it comes to the pre-
diction of very high flow rates.

At the point the anomaly detection investigations were made it was not clear what fea-
tures will be used for measuring the flow rate so the amount of work that went into check-
ing for events like the siren or the breaks will probably have little effects on predicting flow
rates.

There we also noticed some auto-gain occurring. There was an event with a ’loud’ click
and one could clearly see that the entire signal became quiet for a moment and raised its
gain again shortly after that, the same way it is done for vocal recordings in a studio with
so called compression applied.

For the coming investigations we did not apply any of the developed anomaly detection
methods, due to the reasons mentioned above.

3.5 Summary of main findings

There are attempts on predicting properties like velocity and flow rate from acoustic data.
But there is no published work that tackles that problem for the specific situation of sewer
pipes.

Other flow rate prediction investigations make hope that the goal of this thesis can be
accomplished at least to some accuracy. The main differences between our situation and
the ones reviewed are that they usually manually removed noisy data and they manually
configured the gain control of the electronics. So we have to deal with white noise interrupt
and the auto-gain, which requires for robustness of the methods.

The reviewed work utilizes a variety of methods. The most promising amongst them,
seem to be manual investiation of the amplitude for specific frequency bands [9] and ma-
chine learning methods [3].

Although the manual investigations produce human understandable features and models
- and in their case even perform well -, still since it is not using much automated feature
extraction techniques, it is likely that some relationships between features remain undis-
covered. Also in practice there is more noise exposure expected compared to most of the
experiments revieved here.

Our work combines a few edge cases relevant for practical application that have not been
sufficiently explored in previous research: Insufficient amount of training data due to the
high costs of creating more data, noise contained in the data and varying recording condi-
tions inside the data. All of this might often be the case in practice. There is a trend towards
many small/cheap sensors that collectively perform better than one expensive sensor [8] .
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This can be seen for cameras and the entire Internet of Things movement. This work might
open up a new potential field of application for that philosophy.

So despite GWs application, from a research point of view this thesis will also consider
the difficulty of collecting data in real world environments, investigating the robustness of
the methods presented above.

Furthermore this work will also make an effort to combine manual models on human
understandable features with machine learning methods. This way of combining these two
methods might improve the performance of the presented work as well.
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4 Theoretical Background

In this section, we look into the theoretical foundations and concepts that underpin the
analysis and methodologies used in this thesis. We expect the reader to have a basic un-
derstanding of the methods and concepts related to signal processing tools, particularly the
theory behind the applied techniques, such as the Short-Time Fourier Transform (STFT)5.
This assumption is based on the knowledge covered in the courses MA-INF 2113 - Foun-
dations of Audio Signal Processing and MA-INF 2212 - Pattern Matching and Machine
Learning for Audio Signal Processing, led by Prof. Dr. Frank Kurth. Similarly, familiar-
ity with machine learning concepts, including Intelligent Learning and Analysis Systems:
Machine Learning (ILAS-ML) and technical neural networks (tNN), is assumed.

4.1 Common Features in Audio Analysis

In the context of the application treated in this thesis, signal processing (in our case partic-
ularly feature extraction) primarily serves to reduce irrelevant information or to highlight
relevant information from the underlying signal. Everything is calculated by means of the
signal, but due to the sampling rate, the signal usually has a dimension that is very high and
complicates statistical analyses [44].

This work focuses on exploring and applying common features in audio analysis. We
do not provide in-depth discussions of all concepts, but rather give short introductions with
just enough theory so it becomes clear how they fit into the investigations made here.

For readers seeking to refresh or deepen their understanding of these concepts, we rec-
ommend the following resources:

1. Fundamentals of Music Processing, Second Edition by Meinard Müller[33].

2. An Introduction to Audio Content Analysis, Second Edition by Alexander Lerch[26].

3. Introduction to Audio Analysis: A MATLAB Approach by Theodoros Giannakopou-
los and Aggelos Pikrakis[13]

These resources serve as references for gaining a comprehensive understanding of the
foundational concepts in audio analysis, which is not a prerequisite but definitely helps to
comprehend the subsequent sections of this thesis.
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Core Principle Feature [unit] Explanation
STFT Short-time Fourier transform (32 bins)

Pitch [Hz] Pitch tracking on thresholded parabolically-
interpolated STFT.

PSD /Magni [Hz-dB] Power spectral density /Magnitude of STFT
Spectral Features Based on STFT and Pitch.

center_freq [Hz] Compute the spectral centroid.
spec_bandwidth [Hz] Compute p’th-order spectral bandwidth.

spec_contrast [dB] Compute spectral contrast.
spec_flatness [dB] Compute spectral flatness.
zero_cross [counts] Compute the zero-crossing rate.

rms [amplitude] Compute root-mean-square (RMS) value for each
frame.

Table 4.1: List of Features

4.2 Signal Processing Features

In table 4.1, we present a list of core signal processing features that were examined in
this study. These features serve as fundamental building blocks for our audio analysis and
provide valuable insights into the characteristics of the data. In the following sections, we
will investigate some of these features more in-depth, providing detailed explanations and
analysing their relevance to the research conducted in this thesis.

4.2.1 Pitch Estimation Algorithms

Pitch estimation algorithms, also known as Pitch Detection Algorithms (PDAs), are compu-
tational techniques designed to estimate the pitch or fundamental frequency of an oscillating
signal[42]. These signals can include digital recordings of speech, musical notes, or tones.
The primary objective of pitch estimation is to determine the frequency of the dominant
periodic component within the signal. This estimation can be achieved through various
computational methods, considering both the time domain and the frequency domain, or
a combination of both. In this work the implementation of the librosa python library (li-
brosa.piptrack) was used[27].

Pitch estimation algorithms play a crucial role in a variety of domains, including phonet-
ics, music information retrieval, speech coding, and musical performance systems. How-
ever, the specific demands placed on these algorithms may vary depending on the appli-

5There is a nice introduction in Fourier Analysis and the Short-Time Fourier Transform with particular focus
on digitization and its application for Audio in the book Fundamentals of Music Processing by Meinard
Müller (Chapter 2) [33]. The lectures MA-INF 2113 - Foundations of Audio Signal Processing and MA-
INF 2212 - Pattern Matching and Machine Learning for Audio Signal Processing, led by Prof. Dr. Frank
Kurth covered this material.
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cation context. In our concrete application, since the data intrinsically has no particularly
dominant frequency in it (white noise like signal), we would a priorily not suppose that this
feature contains useful information. Still, we include the pitch feature in our investigations
to verify this and in order to be more comparable to the first investigations that were done
by GW on this application and where the feature was used [11].

It seems plausible that traditional pitch estimation methods are not suitable for white
noise-like data, and they may not yield meaningful results. Instead, one should focus on
alternative acoustic features and analysis techniques to gain insights into the unique charac-
teristics of sewer pipe sounds and acoustics. In the experimental section there will be some
short discussion on these features.

4.2.2 Spectral Flatness

Spectral flatness is a measure used in digital signal processing to characterize an audio spec-
trum. Spectral flatness is typically measured in decibels, and it provides a way to quantify
how much a sound resembles a pure tone, as opposed to being noise-like[20].

Figure 4.1: Maximum spectral flatness (approaching 1) is achieved by white noise. Source
of image: [49]

The term "tonal" in this context refers to the amount of peaks or resonant structures in a
power spectrum, as opposed to a flat spectrum of white noise (spectral flatness is sometimes
also called tonality coefficient). A high spectral flatness (approaching 1.0 for white noise)
indicates that the spectrum has a similar amount of power in all spectral bands, making it
sound similar to white noise. In contrast, a low spectral flatness (approaching 0.0 for a pure
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tone) indicates that spectral power is concentrated in a relatively small number of bands,
resulting in a sound similar to a mixture of sine waves [7].

Mathematically, spectral flatness is calculated by dividing the geometric mean of the
power spectrum by the arithmetic mean of the power spectrum:

Flatness[x] B

N
√∏N−1

i=0 x(i)
1
N

∑N−1
i=0 x(i)

where x = (x(0), ..., x(N −1)) is a finite real-valued signal of length N and x(i) represents
the magnitude of bin number i. The result is often converted to a decibel scale for reporting,
with a maximum of 0 dB and a minimum of −∞ dB.

Spectral flatness can also be measured within a specified sub-band rather than across the
whole band. It has applications in various domains, including audio processing and signal
analysis. In this work, we will explore the significance of spectral flatness in the context of
estimating flow rates.

4.2.3 Center Frequency/Spectral Centroid and Spectral Bandwidth

Spectral centroid (In he experiments mostly denoted by the term center frequency) and
spectral bandwidth can be understood as the first two (statistical) moments of the spectrum
[22].

When one defines the normalized magnitude spectrum by

x̃(n) =
|x(n)|∑

k∈K+ |x(i)|
(4.1)

with x(k) being the discrete Fourier spectrum, k the index corresponding to a certain fre-
quency and K+ the set that contains only non-negative frequency indices, than the spectral
centroid is defined by

C f =
∑
k∈K+

kx̃(k) (4.2)

and the spectral bandwidth by

S 2
f =
∑
k∈K+

(k −C f )2 x̃(k) . (4.3)

So, in simpler terms, the spectral centroid tells you where the "center" of all the fre-
quency energy in a signal lies. If the spectral content of the signal is concentrated towards
higher frequencies, the centroid will be higher. If most of the energy is at lower frequencies,
the centroid will be lower.
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It’s a useful feature in audio analysis because it can help characterize the tonal bright-
ness or darkness of a sound. For example, a high spectral centroid value might indicate
a sound that’s brighter or more treble-heavy, like a whistle or a cymbal, whereas a lower
spectral centroid could correspond to a sound that’s more bass-heavy, like a kick drum or a
low-pitched rumble.

For the spectral bandwidth can than be imagined like the spread of the spectrum. For
example a sine wave was a small spectral bandwidth compared to the sound produces by a
vibrating string or white noise signals.

4.2.4 Zero Crossing

The zero crossing rate, here denoted as vZC(n), is a fundamental low-level feature exten-
sively employed in speech and audio analysis. It measures the number of sign changes
in consecutive blocks of audio samples, offering valuable insights into the noisiness and
periodicity of a signal[26]. It has been used for decades in speech and audio analysis (for
example for the classification of percussive sounds[14]) due to its simple calculation. The
zero crossing rate is calculated as follows:

vZC(n) =
1

|ie(n) − is(n) + 1|

ie(n)∑
i=is(n)

|sign[x(i)] − sign[x(i − 1)]|

with the sign function being defined by

sign[x(i)] =


1, if x(i) > 0
0, if x(i) = 0
−1, if x(i) < 0

and is(n) being the start and ie(n) the end sample for a recording.

The output of the zero crossing rate, vZC(n), falls within the range 0 ≤ vZC(n) ≤ 1. A
higher zero crossing rate indicates a signal with more frequent sign changes, suggesting the
presence of noise or high-frequency content. Additionally, variations in the zero crossing
rate across blocks can imply a lack of periodicity in the signal.

The zero crossing rate serves a dual purpose: It has been employed to gauge the signal’s
noisiness and to estimate its fundamental frequency. In our case it is interesting, because
our data is noise like, and becomes even more close to white noise the higher the flow rates
are. Therefore, it might serve as a promising feature.
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4.3 Machine Learning Methods

This section will introduce concepts related to machine learning. The methods we used for
the hybrid and the end-to-end methods.

4.3.1 Random Forest

Random forests have emerged as a prominent ensemble learning technique due to their
robustness and versatility in handling various machine learning tasks. Comprising an en-
semble of decision trees, each trained on a different subset of the dataset and making pre-
dictions independently, random forests harness the power of multiple learners to generate
more accurate and stable predictions.

The fundamental building block of a random forest is the decision tree, a hierarchical
structure that recursively partitions the feature space based on specific criteria, such as the
Gini impurity or information gain, aiming to minimize uncertainty and maximize homo-
geneity within the resulting subsets. The Gini split criterion, measuring the impurity of
a node by evaluating the probability of incorrectly classifying a randomly chosen sample,
serves as a crucial metric in guiding the tree’s node splitting process.

The interpretability inherent in decision trees contributes significantly to the appeal of
random forests. By inspecting the individual decision trees within the ensemble, practition-
ers can glean valuable insights into the decision-making process, identifying key features
and pathways that influence predictions. This interpretability fosters a level of transparency
and understanding, enabling users to comprehend why certain predictions are made—a fea-
ture highly desirable in practical applications and model evaluations.

One compelling reason for utilizing random forests in hybrid methods is their inher-
ent ability to balance interpretability and complexity. While decision trees provide a clear
and intuitive framework for understanding predictions, the ensemble approach of random
forests allows for increased model complexity and improved predictive performance by ag-
gregating diverse tree-based models [17].

In this thesis, we delve into the utilization of random forests within hybrid methods and
more, leveraging their interpretability and predictive power to enhance the performance and
explainability of machine learning models in diverse domains.

4.3.2 Overview of used ML methods

At one point of the experiments (when we optimize classical performance utilizing machine
learning methods, Section 5.5.1) we try out other machine learning methods other than the
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random forest. When checking against other methods one ensures that the model has noth-
ing intrinsically unsuitable for the problem at hand.

The alternative models are the following:

• Support Vector Machine (SVM)

• Gradient Boosting

• k-Nearest Neighbors

• Logistic Regression

• Multi Later Perception (MLP)6

Notably, this investigation is not the main focus here and ultimately revisiting the details
is out the scope for this work. However, the reader interested in the definition and detail of
those methods we can recommend the book Pattern Recognition and Machine Learning by
Bishop, Christopher M. [5].

4.3.3 Mixup: A Data Augmentation Technique

Mixup is a data augmentation method proposed by Hongyi Zhang et al[52]. It is designed to
expand the dataset by mixing both input and output data based on a mixing ratio sampled
from the Beta distribution. This technique is used to improve the generalization perfor-
mance of machine learning models, as it smoothens the decision boundary.

Mixup creates augmented data by mixing original data points. The mixing ratio deter-
mines the degree to which the data is mixed. The augmented data will have labels between
0.0 and 1.0, representing the interpolation between two original data points.

Motivated by the need for better generalization performance, mixup introduces a simple
data augmentation routine. It constructs virtual training examples as linear interpolations
of feature vectors and associated targets. The method can be summarized as follows:

x̃ = βxi + (1 − β)x j, where xi, x jare raw input vectors
ỹ = βyi + (1 − β)y j, where yi, y jare label encodings

Here, (xi, yi) and (x j, y j) are data samples and corresponding labels randomly drawn from
the training data, and β ∈ [0, 1]. Mixup extends the training distribution by incorporating

6In this text we sometimes just call it neural network.
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the knowledge that linear interpolations of feature vectors should lead to linear interpola-
tions of the associated targets. It can be easily implemented with minimal computational
overhead, yet is highly effective.7

4.4 Evaluation Measure

4.4.1 Accuracy

As a basic performance measure, the accuracy was defined in the following way

accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi) (4.4)

with y being the prediction of the network on the entire dataset, ŷ the according ground
truth, nsampes the number of samples and the identity function 1(·) results to 1 when the ar-
gument is true and 0 if false.

This measure was chosen, because it is easily implemented, interpreted and easy to de-
bug. Note that this performance measure does not take precision and recall into account,
i.e. depending on the balance of true and false samples in data learning a constant func-
tion might achieve a high accuracy. This issue was addressed by checking it manually
afterwards.

4.4.2 Weighted F1 Score

In the realm of machine learning and classification tasks, the evaluation of a model’s per-
formance is a fundamental aspect of the analysis. Accuracy, the ratio of correctly predicted
instances to the total instances, serves as a commonly employed metric. However, in the
presence of class imbalance, where one class significantly outnumbers the other, accuracy
alone may not provide an accurate representation of the model’s effectiveness.

To address this limitation, the Weighted F1 Score emerges as a more nuanced perfor-
mance metric. The Weighted F1 Score is an extension of the traditional F1 Score, which
itself is the harmonic mean of precision and recall. Precision measures the proportion of
correctly predicted positive instances out of all instances predicted as positive, while recall
quantifies the fraction of correctly predicted positive instances out of all actual positive in-
stances.

7Despite its simplicity, mixup has achieved state-of-the-art performance in various image classification
datasets. The source code to replicate the CIFAR-10 experiments using mixup is available at https:
//github.com/facebookresearch/mixup-cifar10.
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The F1 Score combines both precision and recall into a single metric, offering a balanced
assessment of a model’s ability to correctly classify positive instances [46]. However, in
real-world scenarios where class imbalances are prevalent, it becomes crucial to consider
not just the overall F1 Score but how it accounts for the imbalance between classes.

This is where the Weighted F1 Score comes into play. To ensure a more comprehen-
sive evaluation, it takes into account the class distribution by assigning different weights
to different classes. In situations where the minority class holds greater importance, the
Weighted F1 Score assigns higher weight to that class, thereby emphasizing its correct
classification [29].

The formula for the Weighted F1 Score F1w for an n-class problem is expressed as fol-
lows:

F1w =

∑n
i=1(wi · F1i)∑n

i wi
(4.5)

Where:

F1i is the F1 Score for the ith class.
wi is the weight/support assigned to the ith class.

By employing the Weighted F1 Score, we can tailor our model evaluation to consider the
practical implications of class imbalance. It provides a balanced and weighted assessment
that gives prominence to the minority class. In the context of our experiment, where imbal-
anced class distributions are prevalent, the Weighted F1 Score will yield insights that better
align with actual applications, because it is more robust.

4.4.3 Confusion Matrix

The Confusion Matrix is a fundamental evaluation measure used in machine learning and
classification tasks. It provides a tabular representation that summarizes the performance
of a classification algorithm by displaying the predicted and actual classes of a dataset.

The matrix is structured into four compartments: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). The rows represent the actual classes, while
the columns signify the predicted classes.

Predicted Positive (TP) False Negative (FN)
False Positive (FP) Predicted Negative (TN)
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The main diagonal of the matrix represents correct predictions (TP for positive class
and TN for negative class), while off-diagonal elements indicate errors. TP and TN reflect
correctly classified instances, whereas FP signifies false alarms (Type I error), and FN rep-
resents missed detections (Type II error).

The Confusion Matrix aids in computing various performance metrics such as accuracy,
precision, recall, F1-score, and specificity. These metrics offer insights into the classifier’s
effectiveness, highlighting its strengths and weaknesses.

The Confusion Matrix enables a comprehensive assessment of classification model per-
formance, assisting in making informed decisions regarding model optimization and im-
provement [45].

Note that this concept trivially extents to classification tasks of more than two classes.
This gives more insights than just checking if the prediction failed or not, but also makes
clear what class was actually chosen by the classifier.

4.5 Visualisation Technique

4.5.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a fundamental statistical technique used to estimate
the probability density function of a continuous random variable based on a set of observed
data points. Informally, KDE can be understood as a continuous, smooth version of his-
tograms. Unlike traditional histograms, which provide a discrete representation of data,
KDE offers a continuous and smooth estimate of the underlying data distribution.

KDE achieves this by placing kernel functions, typically Gaussian functions, at each data
point and then summing them to create a smooth estimate of the probability density8. This
process results in a curve that represents the likelihood of observing a data point at any
given value along the variable’s range.

KDE is particularly useful in situations where you have a set of data points and wish to
gain insights into the underlying probability distribution. It is employed in various fields,
including statistics, data analysis, and machine learning, for tasks such as data visualization
and density estimation.

In this work it was primarily used to gain quick insights into the distribution of the data
by studying its visualisation. An example can be seen in Figure 6.1

8For a rigorous definition, here is a nice source: [36]
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4.5.2 Scatter Plot Matrix

A Scatter Plot Matrix (SPM) is a grid of scatter plots that visually displays relationships
between pairs of variables in a dataset. It serves as a comprehensive tool for exploring
multivariate data patterns and correlations.

The SPM comprises a symmetric grid of scatter plots, showcasing relationships between
variables. Its symmetry allows for examining only the upper or lower triangular part of
the matrix to understand all relationships. Along the diagonal, Kernel Density Estimation
(KDE) plots illustrate the univariate distribution of each variable, aiding in understanding
individual variable characteristics.

The scatter plots in the matrix reveal patterns such as linear relationships, clusters, out-
liers, and correlations between variables. Analysis involves observing trends, concentra-
tions of points, or dispersion across plots, offering insights into the data’s interrelationships.

To create an SPM, a dataset with multiple variables is required. Each variable repre-
sents a dimension, and the SPM visualizes relationships between these dimensions through
scatter plots [34]. An example can be seen in Figure 9.2
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5 Experiments

This section will apply the features and methods for analysing audio signals previously
discussed in the theory section on the the GW data. As already mentioned in the theory
section, working with audio always means working with large amounts of high dimensional
data. In this work we deal with this fact in two ways.

I. Reduce the dimension as much as possible, by using human understandable low di-
mensional representations of the data, while still capturing as much information as
possible

II. Make use of data driven machine learning methods, i.e. let a regression algorithm
’learn’ a low dimensional representation of the data. Here we don’t spend much time
on monitoring the features, but focus on the networks capability of producing "good"
predictions (supervised learning).

Note that the second approach requires much more data than the first one. We note that for
the task addressed in this thesis the process of data aquisition is quite complex and depen-
dent on external factors such as the weather and access to specialized recording equipment
and sites. Due to these difficulties the amount of data available for ML methods was re-
stricted by those external conditions. However, it is still interesting to see the performance
of such methods on the given data. The goal is to find out whether the achieved accuracy
will be sufficient to solve the task of predicting the water flow acoustically. Nonetheless, the
conducted experiments reveal further problems one might tackle, namely choosing different
decision boundaries than the ones requested by GW and analyzing the impact of changing
acoustic conditions (domain shift). So in the end of this section there will be experiments
deviating from the just defined goal.

The order of the presented experiments follows a structure that starts with the above pro-
posed (I) method of manually designing processing pipelines end ends with the mentioned
(II) method of applying machine learning. In between those two extremes will be several
combinations of classical and machine learning methods. Obviously, this is not the most
precise way to cluster analytical methods, since there are many ways to combine machine
learning with manual processing, especially when it comes to combining them. For the
sake of giving the reader some orientation, the experiments will be ordered by grouping
them into the following three categories.

1. Classical Methods (human understandable representation and reasoning)

2. Hybrid Methods (mix between 1. and 3.)

3. End-to-End Methods (applying Machine Learning)

The following subsection will motivate the decision of combining classical and end-to-end
methods. After that follows the presentation of the experiments.
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Figure 5.1: Schematic on how we the presentation of experiments is structured. ’Manual’
refers to applying classical methods, and ’ML’ refers to machine learning

methods.

5.1 Leveraging Domain Knowledge Before Transitioning to
Machine Learning

The data science and machine learning communities often go hand in hand. On one hand,
the power of advanced machine learning algorithms and neural networks promises auto-
mated solutions with the potential to find patterns within data. On the other hand, the
importance of domain expertise and interpretability cannot be overstated, especially when
dealing with datasets of limited size.

The experimental section starts with manual decision-making and uses increasingly more
machine learning techniques, with the goal of utilizing the full potential of domain knowl-
edge before embracing the "black-box" nature of fully automated learning algorithms.

The strategy employed here uses an initial phase of manual feature engineering, threshold-
based decision rules, and an in depth exploration of the data landscape. We prioritize human
intuition and domain understanding, allowing these elements to guide our decision-making
process. This initial manual phase sets the stage for interpretability, traceability, and trans-
parency in our analytical journey.

This approach has many advantages. First, it enables us to fully leverage the domain
knowledge at our disposal, making informed decisions that are rooted in an understanding
of the problem’s details. Second, the outcomes of manual methods tend to be more inter-
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pretable. Third, it promotes thorough data exploration, helping with the identification of
hidden patterns and relationships within the dataset.

Furthermore, the initial manual phase provides a baseline for performance and an oppor-
tunity to gauge the effectiveness of subsequent machine learning techniques. This "human-
first" approach is often more efficient in terms of time and computational resources, espe-
cially when dealing with limited data.

However, this method is not without its limitations. Manual methods can introduce biases
stemming from human decisions and may struggle to capture complex, high-dimensional
patterns in the data. Recognizing these limitations, our approach involves a gradual tran-
sition to machine learning methods. This transition seeks to strike a balance between the
strengths of manual methods and the power of automated algorithms. We will not train it
’purely’ end-to-end (.wav file to flow rate), but still decide for a representation the network
will be provided. The data will remain high dimensional though.

The hope is that during the transition from the first to the second phase (only preprocess-
ing the data without proposing a model for the predictions) we learn something and can
already see what features/investigations are promising. A good rule of thumb is "if one can
already imagine the data to be visually separated, that is a good sign that a suitable ML
method will exist - even if it might be difficult to estimate."

Another reason why to start with classical methods is that from the beginning it was not
clear if enough data was available to train end-to-end methods. So starting incorporating
as much domain knowledge as possible reduces the degrees of freedom the network has to
deal with, which allows for having only few data samples available.

5.2 Software and Environment

The experiments were done in python jupyter notebooks[23] in a virtual coding environ-
ment. Mainly the packages numpy[15], pandas[47], Scipy[32] were used for processing the
data, such as computing Fourier transforms and spectra. Machine learning was done with
sklearn/scikit-learn[38], deep learning with tensorflow[2] and visualizations were made
with matplotlib[18] and seaborn[50].

5.3 Omission of Anomaly Detection

In the context of the experiments conducted in this study, it was decided not to employ
anomaly detection as a preprocessing step, despite the availability of advanced techniques
that have been developed (as referenced in the audio lab done by us [19]). This decision
was made comfortably due to the following two facts:
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To our understanding the short-term events resulting from other sources, such as vehicu-
lar activities, were not expected to significantly compromise the overall performance.

Additionally, it is noteworthy that one facet of the initial anomaly detection framework
involved the filtering of signals showing strong similarity to white noise. However, sub-
sequent analysis done in this thesis revealed that signals exhibiting high spectral flatness,
which were initially treated as anomalies, held intrinsic value as features for the extrac-
tion of extreme flow patterns within the dataset. This emergent insight was not foreseen or
considered during the original investigations into anomaly detection methods.

5.4 Classical Methods

Here the focus will be on investigating the data manually, by computing well known fea-
tures from the signal processing library librosa[31].

The question of interest is:

Are there already some visual indications for robust features that cluster the data
well in terms of correlation with flow rate?

Robust in this case means that slight variations of the decision boundaries does not degrade
the performance.

As already mentioned, the raw .wav file as well as the STFT of that recording constitude
high dimensional data. For a raw 10 second recording with our sampling rate 48 kHz this
amounts to 480, 000 floating points numbers (floats). For the spectrogram (implemented
by the librosa library9 [28]) it is roughly 120, 000 floats, so still too much to be human
manageable.

Due to this high dimensionality, we will utilize the features presented in the theory sec-
tion to reduce the dimension.

5.4.1 Power Spectral Density (PSD)

The Power Spectral Density (PSD) is a fundamental feature that serves as the basis of our
analysis. In this section, we perform an in-depth exploration of the PSD.

We initiate our examination by roughly scanning the PSD for all recorded events, see
Figure 5.2 for event 1, 2 and 3 and Figure 5.3 for event 4 and 5. This is the first deeper look
at the data. Notably, the observed PSD exhibits a polygonal structure, which may initially
suggest the use of an extensive window size in its creation. However, this piecemeal linear

9If not specified the default values are used: window length = nfft = 4 * hop size = 2048, hann window,
centered frames and zero padding
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Figure 5.2: PSD of events 1, 2 and 3 with (relative) hue encoding the flow rate according
to the colormap shown on the right.

structure - i.e. one can see it is discrete - is the result of pre-processing. Initially, the spec-
trum is computed in accordance with the sampling rate, and subsequently, down-sampling
of the PSD is carried out with a precision of 344 Hz. The fact that the recordings mostly
sound like noise, allow for such a rough down-sampling. In applications where greater
details are required (for e.g. speech detection or speaker separation) this would, however,
discard a lot of useful information.

Here however the focus lies on manual experiments of the data, for that a low dimen-
sional representation is desired.

Upon closer examination of the PSD, several observations can be made. The following
list describes/summarizes the most interesting:
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Figure 5.3: PSD of events 4 and 5 with (relative) hue encoding the flow rate according to
the colormap shown on the right.

• Event 1 displays curves assigned to low flow rates with an unconventional trajectory,
raising questions about its distinctive characteristics.

• Event 1 (relative) high and low flow is not as nicely separated as the other ones
(except for event 5). This might be due to the low flow present in all the samples in
the first event. In that regard it makes sense that they all clutter in the same region,
because one can consider all of them to have low flow rates (compared to the other
events and considering the domain experts assessment that everything below 200 l/s
can be consideres as "nothing too special")

• In events 2, 3, and 4, recordings with lower flow predominantly reach smaller values
across all frequency components.

• Events 1, 2, 3, and 4, characterized by the highest flow rates, consistently peak at
approximately 30 dB in the PSD.

• The last event, in contrast to the others, shows anomalous characteristics. It was
checked that the problem lies indeed in the data and not the computation of the PSD,
see below for the explanation why that is.

• Event 3, distinguished by the highest flow rates, notably presents the flattest spectrum
among all events. This observation suggests that spectral flatness may be a promising
candidate as a valuable feature for discriminating the highest flow events.

Next a deeper look is taken at event 1 and event 2.
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Figure 5.4: The PSD of event 1. It shows the anomaly that most of the ’strange’ samples
are assigned to a flow rate equal to zero.

Deeper investigation of the first event Let us delve deeper into the charac-
teristics of the curves observed in the first event.

Upon closer examination, it becomes apparent that these curves exhibit a distinct pattern
similar to a scaled version of the mathematical function exp(−x). This observation suggests
the presence of a specific type of noise affecting the data. Further investigation into this
matter reveals a notable observation:

When checking the labels of those events, one notices that the majority of these events
are labeled with a flow rate of 0, a condition that, while possible, seems unlikely. One can
see this in Figure 5.4.

This finding is particularly perplexing given that the Nivus flow meter, our gold stan-
dard tool for flow rate measurement, recorded these readings. Therefore, it raises questions
about the reliability of our prototype’s ability to accurately validate the ground truth mea-
surements provided by the Nivus flow meter.

This situation presents us with two plausible scenarios: Either the sewer pipe was indeed
empty, and the Nivus flow meter’s measurements are accurate, or an external source of
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Figure 5.5: The Spectrum of event 1. Here one can clearly see a loud (relative to the rest of
the recording) click at the beginning of the recording

noise affected both sensors, leading to the malfunction of both instruments.

A possible reason for this behaviour would be the automatic gain control. Lets assume
that the Nivus flow meter is correctly measuring zero flow, so there actually was no flow.
That would mean that the sewer pipe is silent, which would cause the auto-gain to increase
the gain a lot. This might normalize, and in this case hence increase, the amplitude to a
level that reaches the magnitude of the others. The difference now however is that fre-
quencies are emphasised which do not contain any useful information, particularly lower
frequencies.

One way of coping with this would be to not only record the audio, but also to capture the
auto-gain currently applied during measurement. This was not possible to do a posteriori
because the gain data was not available, however this might be a possible improvement step
for future data acquisition.

Deeper investigation of the last event Concerning the last event, the reason
for the problem was found. When listening to the recording and/or viewing the spectrum
one notices that every single one starts with a loud click (difference between peak volume
and rest is roughly 40 dB) at the beginning of the recording. This can be easily verified
from Figure 5.5.

Note also that for this event the recordings are shorter (5 seconds instead of 10). This does
not change anything in the averaging process discussed previously.
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One could account for such cases in the data, by comming up with some measure that de-
tects the shape of the spectrum and if some peak is present, just cut that region out. Another
way of dealing with this would be to figure out what caused this shape in the first place.
However, at that point we renounce to dig deeper into the reason of how that happened,
since we do not have access to the experimental setup.

Notably, we did not perform any cleaning for this data, because we also noticed the
absence of any labels.

Further investigations resulted in discovering a failure in the recording hardware of un-
known reason [11]. This results in the measurement data of event 5 being unusable. Event
one to three was not mentioned, because there were available way earlier as it was discussed
in Section 2.1.

Choosing decision boundaries for classification Coming back to the
leading question of predicting the flow rate: All of the so far made investigations (including
the literature review) suggest that the accuracy will be much less detailed than the Nivus
Flowmeter delivers. This motivates to use a classifier as the prediction algorithm, because
that way we already impose some structure that can make the training easier, since the
classes are formed by categorizing the flow rates into broad categories.

This directly brings up the question of where the decision boundaries should be. There
are some ways to tackle this question, depending on the application in mind. For now (it
will change later) this boils down to the question:

What should be considered as high/low flow rates?

So far, all the flow rates of the recordings were depicted relative to the event itself, i.e. for
the first one 100 l/s was the highest flow. This however is for example an order of magni-
tude lower than the highest flow of the third event.

One way of determining what should be considered as high or low flow rate is to nor-
malize it based on the available data, resulting in:

• Minimum flow = 0 l/s

• Maximum flow = 1000 l/s

When we evenly divide this range, we obtain:

• 0 − 333 l/s: Low flow

• 333 − 666 l/s: Mid flow

• 666 − 1000 l/s: High flow
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Figure 5.6: All PSD Signals in one image. This should give first insights about the chance
of differentiating between above/below 200 l/s using the PSD alone.

On the first glance, this approach is not significantly different from what the domain
experts proposes as decision boundaries:

• 0 − 200 l/s: Low flow / "nothing too special"

• 200 − 800 l/s: Increased flow / likely to be a rain event

• 800 − 1000 l/s: High(est)/critical flow / heavy rain

For the further investigations we will use {0, 200, 800, 1000} l/s as decision boundaries.

Using 200 l/s as decision boundary Until now we only looked at features
without any effort to predict something. This will change now.

The next experiments look particularly into differentiating between flow rates above and
below 200 l/s. When looking at the PSD of all events combined while highlighting flows
above and below 200 l/s (see Figure 5.6) one makes the following observations.

• There is still not a clear separation between flow above or below 200 l/s, but almost
all of the high flow rates lie in the upper range of all measured values (between 20
and 30 dB).
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Figure 5.7: Here all the frequencies are flattened into one single array, this means that for
x = 20 dB there are all the frequencies shown that occupy this value. The

y-axis (denoted as ’Density’) is a percentage share.

• None of the red curves have the exp(−x) shape of event one. This makes sense,
because there are no flows higher than 100 l/s present in event 1 and this were the
only ones showing this anomaly.

• Even though the highest flows from event 3 were the ones showing the highest flat-
ness, they don’t seem to appear on top of the PSDs assigned to flows above 200 l/s.

• The representation chosen in Figure 5.6 obfuscates the number of blue curves lying
’directly behind’ the red ones. Therefore another representation was chosen (see
Figure 5.7.)

Figure 5.7 shows all the frequencies flattened into one single array. This confirms that
most of the higher flows are above ∼ 20 dB, so we identify the PSD as a promising feature
for differentiating above/below 200 l/s. However, from this KDE it is not entirely clear how
many false positives a simple separation by amplitude (in dB) will cause and if the resulting
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Figure 5.8: Left: All PSD Signals in one image. Right: All frequencies are summed into
one single array and depicted with KDE.

model will be useful in practice. This will be checked quantitatively in the next subsection

Before discussing this, we will quickly talk about flows above 800 l/s.

Using 800 l/s as decision boundary The same plots visualising the third de-
cision boundary proposed by the domain experts can be seen in Figure 5.8. Note that we
have a total count of 10 recordings (each consisting of 10 seconds) for flows above 800 l/s.

Even though it looks more clear for the separation using 200 l/s as the decision threshold,
when it comes to the highest flows measured, there is no separation possible with the use
of PSDs. Therefore for the rest of the PSD investigations we will not try to predict flows
above 800 l/s into a separate class.

5.4.2 First classifier using PSD

In the last section we identified that when summing the power of all frequencies into one
container one sees a tendency regarding where the higher flows are. Next we try to sepa-
rate the amplitude/energy contained in a frequency range, because when observing the PSD
that divides between above/below 200 l/s (red/blue Figure 5.6) it seems reasonable to pick
a frequency that separates the data well. Detailed histograms of all analyzed frequencies
are given in the Appendix, Fig. 9.1.

From that, amongst others, psd1378 (i.e. 1378 Hz) is a promising feature for separating
the two classes, when comparing the KDEs of all frequencies with each other. When com-
paring aimed for a cluster of flows above 200 l/s (red) that has as few lower flows (blue)
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Figure 5.9: KDE for psd1378.

containted in it. For a plot of only psd1378 see Figure 5.9.

Note though, this circumstance might change completely, when more data is considered,
because we only have limited data available, we suppose that the resulting decision criterion
might change when more data is available at a later point. We are dealing with a small
sample size here and possible later changes in the hardware setup will have a huge impact
on such features.

Testing the first classifier It is good practice to check the distribution of labels
before training a classifier. This will prevent just learning the trivial classifier (always
predicting the output to be the same no matter what the input is.) Furthermore, it gives an
idea of how well the trivial classifier performs. This will set the baseline for an accuracy
that should be improved by more sophisticated classifiers.

A histogram of the labels is shown in Figure 5.10. When counting the incidences one
obtains that 85 % of the recordings are bellow 200 l/s, this means that our model has to
perform better than that to be useful.

In the following we will test how well the data is actually separated by a decision rule
based on the amplidute/energy in dB in the frequency bin corresponding to 1378 Hz.

When setting the separation boundary to 25 dB an accuracy of 0.84 is reached (F1 score
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Figure 5.10: This histogram shows the occurrence of the according labels above/below
200 l/s.

and confusion matrix can be found in table 5.1). This is actually a bit worse than the trivial
classifier. The amount of wrongly and correctly predicted classes for the case above 200 l/s
is roughly the same (see the confusion matrix). This model has a relatively high recall,
indicating that it is good at catching positive instances, but the precision is lower, meaning
that there are some false positives. Depending on the specific context and goals of your
model, one might need to adjust the trade-off between precision and recall to meet the
objective.

Metric Value
Accuracy 0.84
F1 Score 0.55

Confusion Matrix Predicted < Predicted >
Actually < 644 145
Actually > 4 136

Table 5.1: Classification Metrics for the 25 dB threshold.
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Figure 5.11: This shows the result of the systematic search for the optimal threshold that
separates the two classes best.

To make sure that this failure in classification is not due to our ad hoc choice of the
boundary an automatic search was performed by scanning through all the dB values and
computing its accuracy and f1 score. The results of this experiment are shown in Figure
5.11.

Note that the weighted f1 score was used here for training, although it did not make
a huge difference here. From the systematic search of the optimal threshold the result is
27.2 dB. The confusion matrix can be seen in table 5.2. There the confusion matrix is much
more balanced.

Already here there is an application dependent choice to make: All classifiers reach ap-
proximately the same accuracy. Some however, produce much more false negatives than
others. For the application of flood prevention for example, the false positives might be
more tolerable than false negatives. Using one method, the alarm would be produced more
frequently without there being an actual problem. However, based on another classifier
would miss to warn much more often. In such an application the first behaviour is probably
more desirable. For a different application this might however look different. Notably, such
unreliable systems should not be used for critical situations such as flood prevention at this
stage of development as a too high amount of false positives will degrade the trustworthi-
ness of the model.

In our quest for parameter optimization, we devoted substantial effort to meticulously

58



5 Experiments

Prediction for Threshold 27.2
Custom Model
Accuracy 0.87
F1 Score 0.65

Confusion Matrix Predicted True Predicted False
Actually True 738 51
Actually False 68 72

Table 5.2: Classification Metrics for the 27.2 dB threshold.

fine-tuning this particular parameter. We explored its full potential and subjected its perfor-
mance as much as possible.

We summarize several noteworthy insights:

Limitations of PSD as a Predictive Feature: It becomes evident that the Power Spec-
tral Density (PSD) may not be the most effective feature for predicting flow rates exceeding
800 l/s within the context of this dataset. While PSD remains a valuable tool, its suitability
for accurately predicting high-flow scenarios in this specific dataset is called into question.

Trade-offs in False Positives: The choice of threshold and its implications may vary
depending on the specific application. Practitioners may need to decide whether they are
willing to tolerate more or fewer false positives. In practice, distinguishing between flow
rates above and below 200 l/s can be achieved with a level of accuracy of up to 87 %.
This Figure represents a relative improvement of 13 % when compared to previous results,
equivalent to approximately 2 out of 15 instances.

Interpreting Accuracy: It is important to note that the accuracy achieved must be un-
derstood in the context of training data. Since all available data was employed for model
training, the reported accuracy represents how well the model performs on the data from
which it was trained. For the classical methods, there was no perceived necessity to reserve
a separate set of random data for evaluation.
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Figure 5.12: rms against spectral flatness for event 1, 2 and 3 with (relative) hue for flow
rate in l/s.

5.4.3 Spectral Features

With the insights of PSD in mind, this section will delve into the exploration of alternative
spectral features and their potential implications for our analysis. For a first intuition we
plot all features against each other in the above introduced scatter plot matrix. The letter q
in the following section (especially in the images) represents the flow rate in units of l/s.

The SPM of Event 1 can be seen in Figure 9.2. That way one can manually scan for
suitable candidates for the flow rate prediction. In the SPM each point represents a 10
seconds audio recording. On the first view one can already notice that some features seem
to separate the data better than others. Also none of the KDEs separate the data well,
which means that none of the investigated features solves the problem right away, but the
combination of two reaches good results.

The most promising feature here seems: rms against spectral flatness. The plots for event
1 to 3 are shown in Figure 5.12. For event 1 it is easy to see where the data clutters, how-
ever for 2 and 3 that is not necessarily the case. Also it is interesting, that for 2 and 3 the
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Figure 5.13: Same features as Figure 5.12 for event 2 and 3, but with an additionally added
jitter vector to omit occlusion.

data representation seems discrete. Note that this is already the case for event 1, but there
the data is more separated. This hits at higher sound differences for event 1 than for 2 and 3.

It is also notable that despite the values being in a different absolute range, there is no
clear cluster observable, for them. Another things that comes to mind is that it seems to
be less points for event 2 and 3 than for 1 even though they have a comparable amount of
recordings. This combined with the discretization suggests that the chosen image probably
puts many points into the same category, therefore one cannot see how many of them got
the same value. To balance out this effect, we added random jitter to the points, to make
them visible. This can be seen in Figure 5.13

Now this shows that for event 2 the higher flow rates tend to be in the upper left corner
and for event 3 there is no useful correlation. So one has to check the features of one event
relative to the other events. This can be done in two ways: Either adding all data points into
one collective dataset or checking them next to each other. First we investigate the second
way. The results can be found in Figures 9.3 and 9.4. The most promising per event separa-
tion for the events 2 and 3 was spectral bandwidth against center frequency, see Figure 5.14.

For a final comparison of the features, we take a look at all features in one plot. Note that
here again for the spectral flatness against RMS a random jutter vector was added. See the
results in Figure 5.15. From that images one can observe, that using these features, there
is no clear cluster suitable for identifying where certain flows are located. Especially the
highest flows are spread widely.

The consequence of this (concerning only the use of classical methods) is:
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Figure 5.14: Spectral bandwidth against center frequency for event 2 and 3. This feature
seems more suitable for comparable/robust features.

There is not much one can learn about a features of an event by studying the other
events. They seem to cluster in different locations. This is especially true for the

higher flows.

Concerning the research question (predicting flow rates from audio data) this suggests, that
for the application in sewer pipes one has to identify a certain type of flow rate (low/mid/high)
at least once to get an idea of the feature landscape, before predictions can be made. This
circumstance will be reviewed again for the end-to-end methods.

5.4.4 Promising Features for High Flows

When observing the SPM for the dataset that concatenates all three events into one, there is
one very promising feature, concerning the higher flows. It is the case for spectral flatness
against center frequency, see Figure 5.16.

This nice separation already allows for a simple prediction model. We will manually
draw a line and decide for high flows above that line and low flows below it, see Figure
5.17.

For that, we roughly pick two points (green cross) on the grid that make up a nice sepa-
rating line (red line):

P1(3500|0.2) and P2(5500|0.4) (5.1)

When solving the equation y = mx + n, one gets the following parameters:

m = 0.0001 and n = −0.15 (5.2)
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Figure 5.15: All events combined into one image for the check how well cluster translate
from event to event.

Accuracy 0.99
F1 Score 0.92

Confusion Matrix
[
717 2
3 27

]
Table 5.3: Performance of the line separation model for threshold = 400 l/s.

When computing the accuracy this classifier one gets the following tables (5.3 and 5.4):
So we conclude with two main findings concerning that separation:

• Spectral flatness and center frequency combined allow for nice separation of values
above 800 l/s. Thought, it produces many false positives

• When looking at the hue of the above plot, one notices that another flow rate threshold
is naturally separated by the line, namely 400 l/s. This actually achieves an almost
perfect accuracy of 0.99 as well as a nice f1 score, so it is well balanced/robust too.

Note however that this result over fits the current circumstance, that we only have one
event available with flows above 300 (Event 3). Although spectral flatness should remain a

Accuracy 0.97
F1 Score 0.46

Confusion Matrix
[
719 20
1 9

]
Table 5.4: Performance of the line separation model for threshold = 800 l/s.
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Figure 5.16: All events combined into one image and spectral flatness against center
frequency. The most promising feature combination for highest flows so far.

feature of valuable insight, the center frequency is likely to vary with changing geometric
conditions inside the sewer pipe and different locations.

5.4.5 Quick recap of the results so far

Concerning the big picture we can confortably state:

There are already some visual indications for robust features that clusters the data
well in terms of correlation with flow rate.

Relative to the flow of the event at hand there were some trends observable concerning
spectral features and the flow rate.

We looked at PSD, center_freq, spec_bandwith, spec_contrast, spec_flattness and rms.
Zero_cross and pitch are discussed in the next subsection.

Here some quick summary of the results:

• When using only classical methods the differentiation of above/bellow 200 l/s is pos-
sible to some extend when using PSD. It is not perfekt, but definitely better than
guessing (better by 13 %). For the other features it not possible.
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Figure 5.17: Representation of the separation model with a manually drawn line (red)
based on points P1(3500|0.2) and P2(5500|0.4). The equation

y = 0.0001x − 0.15 defines the separation line between high flows (above the
line) and low flows (below the line).

• Using a linear separator with spectral predicting flows above 800 l/s reaches an ac-
curacy of 0.97. Almost all of the errors occur from false positives.

• When one shifts the objective from predicting above 800 l/s to above 400 l/s than
one can accomplish an almost perfect classifier (0.99 accuracy).

65



5 Experiments

Figure 5.18: Result of the pitch estimation feature.

5.4.6 Further Results

This section will show some results that were found during experimentation that did not fit
into the narrative chosen for this thesis. However, they might be interesting for followup
investigations.

Pitch Estimation In our exploration of the recorded data, we encountered an ex-
pected observation. When viewing the pitch estimation feature in the SPM, they seem to
be the least insightful into the data. In Figure 5.18 one can see a histogram of this feature
for the first three events. Here a possible interpretation of that result:

White noise, being a random signal with equal intensity across all frequencies, lacks a
discernible fundamental frequency. Pitch estimation methods are primarily designed for
harmonic signals like speech or musical notes, where a clear fundamental frequency exists.
In the case of pure white noise, attempting to estimate pitch can lead to inconsistent or
unreliable results, often resulting in zeros.

Zero Crossing Rate One of the experiments made by GW which we were not able
to reproduce, due to a lack of data is (for the sake of completeness) presented in the follow-
ing:
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Figure 5.19: Relationship between flow rate and computed zero crossing rate. There
appears to be a negative correlation between the two variables: as flow

activities increase, the zero crossing rate decreases to values near 0.
Conversely, when minimal flow is present, the zero crossing rate stabilizes at

approximately 0.4.

Figure 5.19 shows the relation between the flow rate and the computed zero crossing rate.
It seems like there is a negative correlation: When increased flow activities are present, the
zero crossing rate drops to values close to 0. Likewise, when the there is almost no flow,
the zero crossing rate takes the value 0.4.

When one compares the slope of that curve near the ’14 Jul, 18:00’ x-axis location with
our event number 3 (at 13.07.2021, 24:00), as well as notices the max value having roughly
300 l/s. Is seems reasonable to conclude that they are the same. From that we can conclude
that we only got a snippet of that entire event, namely the one where the zero crossing rate
is close to zero. Therefore, no verification can be done by us.

When this effect appears to occur in every situation, this could be used to identify if flow
is present or not. Possible implementations and applications of this are discussed in Section
8.
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5.5 Hybrid Methods

In this section we will make use of machine learning techniques, more precisely, we will
identify the limitations of the classical methods and try to improve the results, using more
sophisticated algorithms.

For the following experiments (if not stated differently) train-test-split were performed
through an initial uniformly random shuffle of the entire data and than splitting the data into
two sets. We used a test size of 0.2, which means that 20 % of the data is used for testing
and the rest for training.

5.5.1 Improving on the 200 l/s decision boundary

The best performance for separating between above and below a flow rate of 200 l/s ob-
tained by using the energy of the PSD is shown in Table 5.2. When we train a random
forest (Number estimators = 100, everything else keeps the default values of sklearn10) on
the same data to perform the same task, we get the performance shown in Table 5.5.

Accuracy 0.82
F1 Score 0.51

Confusion Matrix
[
136 15
18 17

]
Table 5.5: Performance of the random forest on separating 200 l/s with the psd1378

feature.

One can see that the performance even drops. When one tries other methods (the ones
presented in the theory section) than they all perform roughly the same. This suggests that
we reached the limits of the psd1378 feature and should try something else.

So the next experiments relaxes the effort to do manual feature design and combines
features. Therefore we took the entire PSD as the input for the random forest classifier.
Results are depicted in Table 5.6.

This already performs better than using classical method alone11. This is probably, be-
cause the random forest considers much more numerical values at the same time, makes
(locally) optimal decision concerning the separation of the data and does that multiple times
with a final majority vote. So it is not a surprise, that this performs better than the pure hu-
man decision.

10Default values of RandomForestClassifier in scikit-learn are in the Appendix.
11Note, that this time using the weighted f1 score will not result in any performance improvements compared

to normal f1 score.
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Accuracy 0.94
F1 Score 0.80

Confusion Matrix
[
226 8
10 35

]
Table 5.6: Performance of the random forest on separating 200 l/s with the entire PSD as

feature.

Next we decided to check if any other algorithm might perform better. The results are
shown in Table 5.7.

Classifier Accuracy F1 Score
SVM 0.94 0.79
Gradient Boosting 0.94 0.73
K-Nearest Neighbors 0.93 0.73
Logistic Regression 0.97 0.86
Naive Bayes 0.84 0.55
Neural Network (MLP) 0.96 0.83

Table 5.7: Performance of Different Classifiers on separating 200 l/s with the entire PSD
as feature.

The winner clearly is the Logistic Regression algorithm12, also better than the initial
random forest. For its entire performance report (with confusion matrix) see Table 5.8.

Accuracy 0.97
F1 Score 0.86

Confusion Matrix
[
243 5
4 27

]
Table 5.8: Performance of Logistic Regression Classifier on separating 200 l/s with the

entire PSD as feature.

This suggests that differentiating between above and below 200 l/s is likely to be good
enough in practice, for the application intended by GW. Also note that no anomaly detection
(or any other data cleaning method) was performed before training, so it might even be
possible, that after some appropriate cleaning the performance becomes even better.

12Default values of LogisticRegression in scikit-learn shown in appendix
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5.5.2 Improving on the 800 l/s (and 400 l/s ) decision boundary

Next a review of the results concerning the performance of the higher flows is presented.

The best performance achieved by the classical methods is shown in Table 5.3 and Table
5.4. Now we use the same features but instead of a simple linear model, we use a random
forest. Note that the other models where tried as well, but this time the random forest per-
formed the best. See its performance in Table 5.9 and 5.10.

Accuracy 0.99
F1 Score 0.85

Confusion Matrix
[
360 2
2 11

]
Table 5.9: Performance of the random forest classifier for threshold = 400 l/s.

Accuracy 0.99
F1 Score 0.29

Confusion Matrix
[
369 2
3 1

]
Table 5.10: Performance of the random forest classifier model for threshold = 800 l/s.

For 400 l/s there is no difference concerning the accuracy, however a worse f1 score.
This is however probably not because it learned an underlying structure, but because (due
to random sampling of the train and test data) there are less points inside the second class.
It is still 2 false positives (FP) and 2 false negatives (FN) (probably the same points as it
was for the manual line separator).

For 800 l/s the performance is again a bit more dificult to interpret. The accuracy went
from 0.97 to 0.99. and the f1 score from 0.46 to 0.29. When investigating the relative
distribution it becomes clear that the performance is worse. The line separation had twice
as many FN (upper right in confusion matrix) as it had TN (true negative, lower right in the
confusion matrix) and only one (roughly 1/10 of the TN) FP.

For the random forest model it is again twice as many FN as TN, but three times as much
FP as TN. So it indeed got worse (relatively speeking).

Nonetheless, since there are only 6 data points and we know how the data landscape
looks like (see Figure 5.16) these is no point in further interpreting the results of that ex-
periment. It confirms the limits of the dataset and the features spectral flatness and center
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frequency.

Notably, when we tried the enrich the input data with the other features (spec_bandwidth,
zero_cross, pitch, rms) the performance dropped. This is the opposite behavior that it was
for the PSD and 200 l/s. However, this was expected since it was already visually clear that
all the other features don’t capture any useful information concerning high flows. Therefore
that model first has to learn to ignore them, which also takes time and effort.

At that point there is no further need to train more sophisticated machine learning algo-
rithm for this particular task, since their effectiveness seems to saturate.

However, this brought up a new research direction that slightly deviates from the applica-
tion of GW. Namely: There may be granularity and location of the decision boundaries
that intrinsically separate the data well. Intrinsically, here can be understood as naturally
by the data and underlying phenomenon. Maybe she sound of changes drastically due to
some physical turbulence effect that is especially dominant in this certain sewer pipe archi-
tecture, so it is especially easy to hear and therefore classify.

To demonstrate this with the current experiment see Figure 5.20. It demonstrates how a
different decision boundary reaches different accuracies.

The reason for those performance performance differences can be clearly seen in Fig-
ure 5.21. For 800 l/s the points cluster in one region but spread across the above lengthy
cluster. For 400 l/s it appears to be the entire above lengthy cluster, so it is clear that this
performs well. For 200 l/s one can see that other points start to appear in another place,
making spectral_flatness and center_frequencies not suitable anymore. For that another
feature should be better, for example the random forest on PSD presented earlier in this
section. This alone does not necessarily mean that it is not separable, but the new points
appear relatively wide spread inside another cluster.

However, notice how the performance goes up again for roughly 50 l/s when analysing
Figure 5.20. This once again confirms that some frequencies (particularly the ones below
400 l/s) seem to be better separable than others.

5.5.3 Summary of the results so far

The integration of hybrid methods demonstrates a notable improvement over the exclusive
utilization of classical methods for the PSD, however not necessarily for the highest flows.
This was somehow expected, since we have only a hand full of data point up there. There-
fore, combining these methods, The best performance is to be expected.

Another interesting finding is, that some decision boundaries seem to emerge naturally
from the data. This especially seems to be the case or lower flows. However, this can also
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Figure 5.20: Checking what threshold can be separated best for the features spectral
flatness and center frequency depicted in Figure 5.16. It demonstrates how a

different decision boundary reaches different accuracies.

be the effect of more data being available there, therefore the machine learning models can
leverage their capabilities better.

However, the ultimate evaluation and comparison of these proposed methods will be
presented in Section 5.7. There we will combine the methods into one custom model.

72



5 Experiments

Figure 5.21: Color coding the recordings due to their flow rate. This explains why the
random forest performs best for 400 l/s and worse (in terms of accuracy, not

f1 score) for 200 l/s.

5.6 End-to-End Methods

Although we call these methods end-to-end, this is not the most pure form of it. In our case
that would be a neural network that is trained on the .wav files directly to predict flow rates.
In principal this is possible, but for that much more data is needed.

As already mentioned for a raw 10 second recording saved as as waveform with a sam-
pling rate 48 kHz that means 480, 000 floats per sample. For the spectrogram (implemented
by the librosa library [30]) it is roughly 120, 000 floats per sample. So 1/4 of it, which is
still far from human readable/manually processable. This is why we still call this end-to-
end, even though some pre-processing (computation of the spectrum) was performed.

The baseline of this section will be training a fully connected neural network on log-mel-
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Figure 5.22: Schematic for visualizing the pre-processing procedure. First the recording
(as a .wav file) is converted into a spectrum and than the mean is computed

over all frequencies.

spectra.

5.6.1 Training the model

For training we tried to ’be as end-to-end es possible’, however just presenting the spec-
trum is still too much information to handle for the network. Within training 500 epochs it
was still not able to converge to a useful result, so we decided to compress it even further.
So after the compute the spectrum we also calculate the mean for it. For a schematic see
Figure 5.22.

For the mean signal a length of 0.2 seconds was chosen, which is still above the lower
bound that would allow to still resolve 20 Hz, due to the Nyquist theorem.

Notably, such a aggregation is only feasible, if the signal remains constant during the
entire length of the recording, which is 10 seconds in our case. This can be confirmed since
the (properly scaled) FT of those audio files did not deviate from the (full length) original
signal, when there are no sudden events.

Furthermore down sampling was performed again to support the training. Again, this
should only be done with care, because it reduces the amount of information available.
Here we compressed it down to roughly 30 floats. This is quite a lot, but reasonable for this
application, since the overall shape of the PSD seems enough.

Also note that decision boundaries were apposed right from the beginning, except for
one experiment, which is discussed in Section 6.2. This is so we can easily compare it to
the other models and because it simplifies the training since more ’knowledge’ went into
the model already.

The architecture of the model used for the following experiments (including the chosen

74



5 Experiments

hyperparameters of the model and the training) are presented in Table 5.11.

Parameter Value/Description

Model Architecture Sequential fully connected model

Layers

Input layer: Shape - (Number of features)
Dense layer 1: 128 neurons, ReLU activation
Batch Normalization
Dense layer 2: 64 neurons, ReLU activation
Batch Normalization
Output layer: Softmax activation for all target columns

Optimizer Adam
Loss Function Categorical Crossentropy (softmax entropy)
Metrics Accuracy

Training Parameters
Epochs 500
Batch Size 516
Validation Split 0.2

Table 5.11: Description of the Trained Neural Network Model and Training Parameters.

The model reached an accuracy of 0.89 so already similar useful as the other ones derived
so far (after aggregation and down sampling). This demonstrates the power of machine
learning since much less understanding of signal processing and the data was needed to
achieve a comparable accuracy right away. The confusion matrix is depicted in Figure
5.23.

5.6.2 Adding data augmentation: Mixup

To effectively increase the number of available training samples, existing recordings can
be manipulated randomly during training. Here we perform mixup, an introduction on this
was given in the theory section.

There is one value β that has to be chosen for Mixup. It is the amount of blending be-
tween the actual and different sample. We tried the values(1, 0.8, 0.5, 0.2). A report of the
achieved performance (accuracy and confusion matrix) is shown in Figure 5.24.

β = 1 (Accuracy = 0.89) β = 0.8 (Accuracy = 0.85)
β = 0.5 (Accuracy = 0.91) β = 0.2 (Accuracy = 0.86)

Table 5.12: Table of β values and accuracies for corresponding plots in Figure: 5.24
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Figure 5.23: Confusion Matrix that shows the performance achieved by the model
presented in Table 5.11.

There we make two main observations, namely for β = (0.2, 0.8) the performance goes
down and for β = 0.5 the performance is slightly better. It increased a bit (0.91 accuracy)
and the false positives decreased compared to without Mixup.

Since the addition of Mixup performed a bit better, all the following experiments were
performed with it.

5.6.3 Data Augmentation Decision

In the context of this thesis, the application of data augmentation techniques was carefully
considered, including the use of Mixup. However, it is important to clarify the reasons
behind the decision not to pursue data augmentation further, as the results were not as
promising as initially hoped.

The decision to employ data augmentation was primarily driven by the nature of the
available dataset, which consists of a spectrum of flow rates, including both lower and
higher flow rates, recorded under various conditions.

For the lower flow rates, there existed a sufficient volume of data suitable for experimen-
tation. Augmenting this segment of the data would essentially generate additional instances
of an already well-represented category within the dataset, offering limited potential for en-
hancing model training.

Conversely, the dataset contained only a hand full of instances for higher flow rates.
Augmenting this small data sample would lead to artificially created samples that closely
resemble the original data. Such artificially generated data may not fully capture the unique
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Figure 5.24: Confusion matrices of the models that were trained with augmented data. The
corresponding β values can be viewed in Table 5.12.

characteristics, potential outliers, or nuances associated with high flow rate events.
Furthermore, the effectiveness of data augmentation techniques, such as Mixup and

SpecAugment[35], often relies on the availability of a substantial and diverse dataset. Due
to the dataset being small and not very varied, traditional data augmentation methods were
thought to be less fitting for our research goals.

It is crucial to emphasize that while data augmentation was applied in this study and
even caused slightly improved performance, other approaches and strategies were explored
to enhance the performance of the flow rate estimation model. The later strategies resulted
in greater improvements.
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5.6.4 Concluding words

One can perform various kinds of hyper-parameter optimization to try to increase the per-
formance further. Here a non-exhaustive list of tweaks we tried:

• Trying different learning rates.

• Adjusting batch size.

• Experimenting with the number of neurons in each layer.

• Trying adding or removing hidden layers.

• Introducing dropout layers to prevent over-fitting.

• Applying L1 or L2 regularization to the weights.

• Exploring different regularization techniques.

• Trying different activation functions.

• Adjusting the number of training epochs.

All of these techniques did not help to perform much better than the results already pre-
sented. Since investigations like that are very common and already intensively discussed in
the literature, we will not go into any detail here. The interested reader can find more about
it in [51].

One could obviously improve performance even further, by choosing more sophisticated
networks, for example the attention mechanism[48]. However, figuring out a way of ap-
plying this technique (mostly used in transformers or recurrent neural networks for Natural
Language Processing[43]) for the situation at hand might be a topic of a thesis on its own.

5.7 Comparing Methods

We will now compare classical, hybrid, with the end-to-end methods with each other,
even though the previous sections already suggest, that the pure classical methods perform
worse, than the others.

5.7.1 Combining models into a single classifier

So far all the methods presented in the section about classical and hybrid methods focused
on binary classification, namely predicting of flow rates are above or below a certain region.
Now we want to combine those models into a single classifier that predicts more than just
two classes.
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Figure 5.25: Illustration of the combined model that classifier three classes, however being
composed of two models that perform binary classification.

There are many ways to do it, we will now present the way we diced for: First we use the
trained model that differentiates flow rates above and below 800 l/s since it is the more spe-
cific one in terms of how much data is available. If the prediction says it is bellow 800 l/s
the same data is shown to the next model trained to differentiate flow rates above and below
200 l/s. This architecture is illustrated in Figure 5.25

5.7.2 Final comparison

Now we will compare all the best performing (combined) methods with each other. The
final comparison is depicted in Table 5.13.

Classical Methods Hybrid Methods End-to-End Method
Accuracy Accuracy Accuracy

0.84 0.92 0.92
F1 (weighted) Score F1 (weighted) Score F1 (weighted) Score

0.83 0.92 0.91
Confusion Matrix Confusion Matrix Confusion Matrix

561 42 2
59 53 18
1 0 9



229 13 0
6 43 3
0 2 2



235 10 0
9 39 0
2 3 0


Table 5.13: Comparison of accuracy measures and confusion matrices for all the so far

proposed (best performing) methods.

Even though the metrics (accuracy, F1) are basically the same for hybrid and end-to-end,
One can clearly see that hybrid performs better for the latter class. It seems ’convinient’ for

79



5 Experiments

the network to ignore the ’above 800 l/s class. However, if one needs to tweek a bit more
for certain classes the hybrid approach seems most promising.

This result was somewhat expected, because when a network optimizes for statistical
measures it is to be expected, that underrepresented classes ar investigated and weighted
less. In our application/research however this is was the more important differentiation, so
more (classical) investigation had to be performed, to understand the circumstances better.

So this suggests that if the given dataset is a representative depiction of the distribution of
interesst (not just of availability!) than utilizing end-to-end methods would have performed
comparable to an in depth investigation of a research scientist with domain knowledge.
However, if the given data underrepresents the properties of interesst than deeper investiga-
tions have to be performed.

Note that the performance of the classical methods is rather a training performance than a
test performance, because we used the entire dataset for the manual investigations and also
for the evaluation of the presented performance measures. Still it gives a rough idea of its
capabilities. Again, both hybrid and end-to-end methods were trained with a test size of 0.2.
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Figure 6.1: KDE for all measured flow rates.

6 Complementary Experiments

The last section aimed at performing as good as possible for the application of GW. This
section will dive a bit deeper into other interesting findings that were discovered during
experimentation, but were heading into a slightly different direction.

6.1 Focusing on Lower Flow Rates

This section was motivated by the observation that the proposed methods perform roughly
the same on the task encouraged by GW, especially for the highest flows. Despite GWs
application maybe relaxing the scope of flow rates will result in better performance for a
task can still be considered as part of the research question asked here. The question now
is:

What if we throw away the high flows and try to make more precised predictions
with the lower ones? Is the error rate and accuracy better for lower flows?

The experiments performed in the previous section already suggested, that some deci-
sion boundaries might separate the data better due to some intrinsic nature of the data. The
first decision that hast do be done here is the choice of where the new decision boundaries
should be.
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Figure 6.2: Histogram of flow rates for finding decision boundaries, so the amount of data
points are distributed roughly equal to the bins.

One possibility would be to use 10, 50, 100, 200, 300 as classes because by doing so
higher flow rates are ignored while ensuring a finer granularity for low flow rates.

When the KDE of all measured flow rates one gets an idea of how many counts of certain
flows are present in the data. Such a KDE is shown in Figure 6.1

From this KDE we see that most values are between 0 and 100 than there some more
values between 200 and 400 and from there on it is only a few different values. Since the
KDE only gives us relative values, we will now look into a histogram to find boundaries, so
the amount of data points are distributed roughly equal to the bins. This was done manually.

The mentioned histogram can be seen in Figure 6.2. For the rest of this section these
values will be the decision boundaries our classifier tries to differentiate.

For the training we decided for the aggregated and down sampled spectra again. For the
model we used a random forest and a Neural Network (the same as in Table 5.11). The
result of the training can be seen in Figure 6.3 for the confusion matrices and Table 6.1 for
the corresponding settings and reached accuracies. We gradually increased the size of the
training data to show its effect on the performance.

Here a list of interessting observations:

• Predicting 300-400 fails most of the time for all of the experiments

• It seems to be easy to differentiate between flows above and below 10 l/s. There are
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Figure 6.3: Confusion Matrices for the classifiers of lower flow. The corresponding
settings and achieved performances are shown in Table 6.1.

only few FP and FN.

• From 50 l/s upwards it seems more difficult to clearly assign the proper flow rates.
The error increases, but still allows for estimating roughly. Most of the FP/FN predict
the direct neighbor of the correct class. This suggests that the relative error is smaller
for lower flow rates than it is for higher flow rates. This can mean that for the lower
flows minor changes in the flow speed result in a more distinct sounding recording
than for higher flows.

• The size of training set matters. The more training data, the better the accuracy. How-
ever, the effect seems to saturate quickly. When comparing test_size = 0.2 (which
means 20 % of the data is used for testing. In our case that’s 185 our of 929 record-
ing.) with test_size = 0.5 (464 out of 929, so less than half the training data) the only
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Random Forest (test_size=0.8) Random Forest (test_size=0.5)
Test accuracy = 0.59, Weighted F1 Score = 0.58 Test accuracy = 0.63, Weighted F1 Score = 0.62

Random Forest (test_size=0.2) Neural Network (test_size=0.2)
Test accuracy = 0.65, Weighted F1 Score = 0.65 Test accuracy = 0.61, Weighted F1 Score = 0.62

Table 6.1: Table of Model Performance for the plots shown in 6.3. The Neural Network
here is the same model as in Table 5.11.

noticeable difference is the separation between flows above and below 10 l/s. For the
higher flows the difference is not noticeable. For the separation for flows above/be-
low 10 l/s the increased dataset made a clear noticeable difference. With test_size =
0.5 the separation was still a bit blurry, with 0.2 though, it was not.

• Regarding the improvements, another interesting observation is that while for the
bigger test size and flow rates above 10 l/s most FP/FN chose a direct neighbor rel-
atively symmetrically, it becomes much more asymmetric for smaller test sizes. Vi-
sually speaking: the model overestimates the flow much less often, but stays similar
with underestimating.

• This last experiment used a more sophisticated fully connected neural network. How-
ever, there are no noticeable differences, except for a few more FP/FN and a bit worse
accuracy.

Concluding words

The exploration of refining groundwater prediction models revealed intriguing nuances,
especially in predicting lower flow rates. Focusing solely on lower flows demonstrated re-
duced errors and clearer distinctions in predictions.

Decisive boundaries, identified through analysis of flow rate distributions, notably im-
pacted model performance. Larger training sets significantly enhanced accuracy for lower
flow separations. However, employing a more sophisticated neural network did not yield
substantial improvements over other models. The findings suggest potential for enhanced
predictive accuracy in specialized subsets, emphasizing the distinctiveness of lower flow
predictions.

One could interpret this observation regarding the high flow separation task the following
way: Either we do not have enough data or this task is not solvable in the sense that it is not
distinguishable with the audio data provided, maybe not even with audio data in general.
Without more of the high flow data it is hard to tell the reason.
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6.2 Domain Shift

The concept of domain shift and domain generalization encapsulates the challenge of mak-
ing AI methods robust. This small section aims at testing this robustness. In our context
we investigate into two different types of domains, different location and different event in
terms of contained flow rate. The question is then:

How well can the trained models generalize different domains (locations and
situations)?

In the the previous section about classical methods (Section 5.4) we already saw that the
data clusters in unpredictable locations, making generalisation impossible. Now we focus
on it in slightly more detail.

6.2.1 Training and testing on similar flow rates but different
locations

There are no investigations concerning the improvement of those methods, since we have
only two locations for labeled audio samples available, and the second one does not cover
the range of values that is of interest (58 l/s is the max flow).

Overall Test accuracy 0.88
Weighted F1 Score 0.86

Confusion Matrix


141 4 0 0 0
10 2 2 0 0
1 0 12 2 1
0 0 2 1 0
0 0 0 0 1


Decision Boundaries [’0-10’, ’10-25’, ’25-50’, ’50-100’, ’100-inf’]

Table 6.2: Performance metrics and confusion matrix of a random forest trained on the
dataset that combined event 1 and event 4.

Still we wanted to at least check it. So we trained a random forest again on the PSD of
only the first event (Ueckendorfer_Str) - with a max flow of roughly 100 l/s - and test on
the forth event (Holtkamp). Note that the first event has roughly 2.3 times as many data
points, which can be understand as a test size of 0.43.

For that the following bins have been chosen [’0-10’, ’10-25’, ’25-50’ , ’50-100’, ’100-
inf’]. Note that for the test confusion matrix it is to be expected that there is no data in the
last bin and only very few in the one before that.
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In order to be able to interpret the results, we trained two models and compare them.
The first one shuffles the data of event 1 and event 4 into one dataset and then separates it
randomly again with a test size of 0.3. The results of that can be seen in Table 6.2

The results of experiment where the random forest was trained on event 1 and tested on
event 4 is shown in Table 6.3.

Overall Test accuracy 0.78
Weighted F1 Score 0.70

Confusion Matrix


137 0 0 0 0
25 1 1 0 0
8 1 1 2 2
1 0 0 1 0
0 0 0 0 0


Decision Boundaries [’0-10’, ’10-25’, ’25-50’, ’50-100’, ’100-inf’]

Table 6.3: Performance metrics and confusion matrix of a random forest trained on event 1
and tested on event 4.

As it was expected, the performances decreases. Especially the beforehand relatively
well performing range 25-50 degraded significantly. And since this was actually a range
well represented by the data, this hints at the training data not being general enough for
capturing relevant features.

6.2.2 Training and testing on different flow rates, but the same
location

For this experiment we used the neural network depicted in Table 5.11 again, however with
one crucial modification. The output now does not predict a particular class, but performs
regression, so it returns a floating point number representing a flow ware in l/s 13.

Here we did two experiments. For the first we trained the network on event 1 and tested
them on event 2 and 3. For the second experiment we trained on event 3 and tested on event
1 and 2. The results of both experiments can be seen in Figure 6.4.

For the first experiment one can see that the model is able to perform appropriately on
the train subset, but absolutely fails on the test subset. It seems like the model is not able
to generalize flow rates that exceed the limits of the ones it had been provided. Therefore
no matter how high the labels become, the network always stays under 100 l/s which is the

13This strategy was not presented earlier, because it does not change anything in the performance, but makes
it unnecessary complicated to compare it to the other models (classical, hybrid).
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Figure 6.4: Training a neural network for predicting flow rates in a regressive manner.
Left: Training on event 1 and testing on event 2 and 3. Right: Training on

event 3 and testing on event 1 and 2.

maximum value of the train subset.

In the second experiment the performance is even worse. There the model already fails
at producing good results on the training subset. It seems to stagnate at roughly 400 l/s,
and does not go higher than this, even though it is part of the training subset. This might be
due to the fact that the subset has less than 80 points.

For the prediction one can also see that it fails to predict the lower flows, even though
such flows are part of the training subset. One can see that most most of the time when
some decreased flow is present the network jumps up to its max flow 400 l/s (for the sec-
ond smaller peak of event 1 to 200 l/s). Sometimes it jumps up without any noticeable
reason, which might be caused by noise.

All the experiments presented in this section support the hypothesis that extrapolating
different domains is not possible without special care. If this is something of interest, than
suitable datasets have to be collected to learn more about the underlying behavior causing
the differences for shifting domains.
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7 Conclusions

The design of algorithms for acoustic flow rate estimation within sewer pipes was presented
here. For other applications, there are works focusing on acoustic flow rate estimation.
However, usually these attempts are performed in lab-like environmnents and with the pos-
sibility to generate more data when needed, which is not the case for sewer pipes, since
simulating high flow rates in sewage systems is very expensive and thus the data collection
depends on the weather. The techniques found in the literature consist of manually inves-
tigating the amplitude of certain frequency bands and applying machine learning to obtain
data-driven models. Both have their advantages and disadvantages, which were reviewed
in this thesis.

One important finding is that when we combine manual and machine learning methods,
we combine their strengths. However, while conceptually clear, these mixed methods did
not perform much better than just using machine learning. This shows that machine learn-
ing works well when the data is prepared carefully.

Also we found that, depending on the situation/phenomenon and data available, certain
flow rate ranges can be predicted with better resolution than for other ranges. This turned
out to be related to the amount of training data available, but also some resolutions stayed
the same for a wide range of available training data, hinting at some intrinsically non-
differentiable regions of flow rate values.

The third major finding was that shifting the location decreases the precision substan-
tially. This behavior upon domain shifts suggests that the acoustic flow rate estimation
performs best as a permanently installed long term monitoring system calibrated for the
location where it is used. It seems to be less suited for flow rate measurements on the fly,
due to the performance decrease for varying locations.

It is still to be evaluated if there is a need in the industry for such systems, since Gelsen-
wasser aimed at utilizing this technique to calibrate their hydraulic simulations. It is also
not clear if the acoustic flow rate estimation would indeed be cheaper, since it involves
quite some work, to generate the data necessary for calibrating the network. In any case
more data, with varying flow rates and varying locations would allow for more precise and
reliable answers to these questions.

The investigations showed that it is definitely possible to predict the flow rate in urban
sewage systems. It depends on the application if the accuracy is good enough, and on how
accessible it is for the operator to generate data, since it is not easily produced. It is part
of further investigations to study how much additional knowledge and data is necessary to
make the domain shift possible with less degradation of the accuracy. This is also the case
for experimental setup for the later applications as well es the data generation process.
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This work can be seen as a first step towards developing flow rate estimation algorithms
in real world data recorded in sever pipes. The path is free to improve until its predictions
improve the precision of hydraulic simulations so communities and cities, that are in danger
of flood, are better equipped in heavy rain events.
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8 Outlook and Further Work

This section continues to discuss which investigations can be done to further improve the
performance.

Increase quality and quantity of data

For any kind of empirical investigation a representative sample of the underlying phe-
nomenon is the basis of all analysis, this is especially true for machine learning techniques.
The quality of the data boils down to the experimental setup. Reducing potential sources
of error will provide more reliable data. Also developing regimes for quickly setting up the
recording boxes in the case of predicted rain events will reduce the probability of missing
out the opportunity for collecting valuable data.

Coupling between sensors

In terms of GWs interest to develop a monitoring system that can be installed inside a
sewer pipe one of the time and resource intensive tasks is the calibration. We have seen
that location shifts drastically degrade the accuracy, so it is not possible right away. One
idea that could help the calibration is to allow for some kind of communication between
the sensors, to form an ensemble. This would allow for redundancy and alignment of the
predicted values. One could set up the system so that the sensors know that an adjacent
sensor is located in the same pipe. That way on could estimate a boundary in which the
predicted value can be. Defining an estimation of an error rate might also help: A sensor,
that was directly calibrated by a commercial sophisticated ’ground truth device’ will have
a smaller error than a sensor that is far away from any of such ground truth devices and
other sensors so compare and double check the prediction. Note that one can also verify
the result with previous predictions made by the model, so like a momentum term or a
flattening between multiple time steps.

Providing domain knowledge to the network

When more data would be collected for multiple locations, one could also provide some
additional information to the neural network. For example how deep the pipe is or the di-
ameter of the pipe. Maybe even some more facts about the circumstances, which might
be apparent during the experimentation. This is expected to improve the performance in a
transfer learning situation, especially when a relationship can be obtained manually. Ob-
servations one might keep an eye on could be how the distance to the ground of the pipe
relates to the loudness of the signal and how the diameter of the pipe relates to the location
of the main resonance of the signal.
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Battery live safer through software

One of the challenges of the experimental setup was the battery lifetime. For now the
hardware recorded the entire time between mount to dismount (except of course, when the
battery died). One could use a more lightweight and efficient chip that only starts all of
its processes and electronically devices (like amplification of the microphone and wireless
connection) from a predefined signal. If could be an external signal, or when a certain
threshold of loudness is reached. This is however not suggested to do as a first step to
increase the battery lifetime. It is likely that investing in a stronger battery will have a
larger effect. As discussed in the experimental Section, the zero crossing rate could also
provide information about, when to start the entire measuring machinery.

Auto-gain and Normalization

From the beginning we discovered the auto-gain performed by the sensor. In the literature
one can find the reason and implementation behind such techniques [21]. It seems reason-
able for our task, however it modifies the data and is something a data-driven model has to
learn about as well. One advantage of auto-gain however is that one does no have to control
it manually. One way of dealing with this is to read out the chosen value for the auto gain
and provide it to the network.

Exploration of Ensemble Techniques for Model Combination

In the course of this study, the use of a custom sklearn model was employed. Sequential
models were engaged based on the output of the preceding one. However, an inherent
limitation was identified: In cases of false positives from the initial model, subsequent
models were not utilized for further predictions. To address this limitation and enhance
predictive accuracy, further exploration into ensemble techniques is recommended. These
techniques aim to combine multiple models to achieve superior performance. Potential
methods for consideration include:

1. Voting Classifier: Implementing a Voting classifier to aggregate predictions from
multiple models, either through majority voting or by averaging probabilities [4].

2. Stacking: Exploring the use of a meta-model trained on predictions of base models
as features [37].

3. Bagging and Boosting: Investigating Bagging (e.g., Random Forest) and Boosting
(e.g. Catboost, AdaBoost, Gradient Boosting) techniques to create diverse model
ensembles [39].

Experimentation with these ensemble techniques aims to mitigate false positives, in-
crease model robustness, and potentially improve overall predictive performance. Further-
more, assessing the diversity among models is essential to prevent correlated errors and
maximize the effectiveness of ensemble methods.
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9.1 Sklearn default values

9.1.1 Default values of RandomForestClassifier in scikit-learn

• n_estimators: 100 (The number of trees in the forest)

• criterion: "gini" (Function to measure split quality)

• max_depth: None (Maximum depth of trees)

• min_samples_split: 2 (Minimum samples required to split an internal node)

• min_samples_leaf: 1 (Minimum samples required to be at a leaf node)

• min_weight_fraction_leaf: 0.0 (Minimum weighted fraction of samples required
to be at a leaf node)

• max_features: "sqrt" (Number of features to consider at each split)

• max_leaf_nodes: None (Grow trees with max leaf nodes in best-first fashion)

• min_impurity_decrease: 0.0 (Minimum impurity decrease for node split)

• bootstrap: True (Whether to use bootstrap samples)

• oob_score: False (Whether to use out-of-bag samples to estimate generalization
score)

• n_jobs: None (Number of parallel jobs)

• random_state: None (Controls randomness during tree building)

• verbose: 0 (Controls verbosity)

• warm_start: False (Whether to reuse solution of previous fit)

• class_weight: None (Weights associated with classes)

• ccp_alpha: 0.0 (Complexity parameter for Minimal Cost-Complexity Pruning)

• max_samples: None (Number of samples to draw for each base estimator)
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9.1.2 Default values of LogisticRegression in scikit-learn

• penalty: ’l2’ (Specify the norm of the penalty)

• dual: False (Dual or primal formulation)

• tol: 1 × 10−4 (Tolerance for stopping criteria)

• C: 1.0 (Inverse of regularization strength)

• fit_intercept: True (Specifies if a constant should be added to the decision func-
tion)

• intercept_scaling: 1 (Useful for ’liblinear’ solver with intercept)

• class_weight: None (Weights associated with classes)

• random_state: None (Used when certain solvers are employed)

• solver: ’lbfgs’ (Algorithm for the optimization problem)

• max_iter: 100 (Maximum number of iterations for solvers to converge)

• multi_class: ’auto’ (Strategy for handling multiclass problems)

• verbose: 0 (Verbosity for certain solvers)

• warm_start: False (Whether to reuse the previous fit solution)

• n_jobs: None (Number of CPU cores used for parallelizing)

• l1_ratio: None (Elastic-Net mixing parameter)

9.2 Images

The rest of the appendix is used as a collection of all the images that did not fit into the
text, so they are located in the end of the thesis. One can find them right after the list of
references in the very last pages of this work.
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Figure 9.1: This figure is similar to figure 5.7 but this time there is no flattening. So every
frequency is depicted by its own.
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Figure 9.2: Scatter plot matrix for the first event. It depicts all the features of table 4.1.
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Figure 9.3: Scatter plot matrix for the second event. It depicts all the features of table 4.1.
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Figure 9.4: Scatter plot matrix for the third event. It depicts all the features of table 4.1.
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Figure 9.5: Scatter plot matrix for all three events in every plot. It depicts all the features
of table 4.1.
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