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Introduction

This document is a written elaboration of the presentation hold by Johannes
Schmidt (born in Bonn 14.02.1997) in the winter semester 2021/2022 for the
course ’Audio Seminar’.
The main objective of the talk and therefore this work will be the theoretical
background and results of the paper [4]. Since the authors improve a method
proposed by [5], the first part of the elaboration talks about their work. The
images for illustrating basic concepts of neural networks are taken from [3] and
[1] and the concepts themselves from [2]. As a road map of this document, here
is what will be discussed:

1 The definition of the problem: Cocktail party problem

2 Used technique: Black Bock approach - Deep Learning

3 Basic principles of feed forward neural nets: special care on FCNN, CNN,
RNN, LSTM (terms explained bellow)

4 Explanation of the used network: Baseline approach

5 What modifications are done in [4] doing compared to the baseline ap-
proach

6 conclusion

1 Cocktail Party Problem

The field of speech recognition deals with designing algorithms that convert au-
dible speech into written text. Modern achievements made by deep learning
techniques make up for more applications, because they are not human under-
standable. Problems in robustness and accuracy occur when there is background
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noise and when the target speaker is overlaid by other speakers. The task of
separating a particular speaker from a superposition of multiple speakers and
noise is known as speaker extraction. This is our objective.
To be more precised, the setup is the following:
Given noisy data we try to extract a target speaker and additional reference
audio of this target speaker, the objective (in this case) is to calculate a (soft)
mask. This mask applied on the original noisy data shall yield the target speaker
extracted from the noisy data.

2 Used Techniques

The proposed technique for solving this task is a deep neural network, so a black
box approach. By black box one means that it is not clear to the engineer what
features the algorithm actually learned for calculating the output. One can only
validate its performance on some test data and estimate the accuracy.
The main focus here is to explain the building blocks of the neural network
proposed by [4].
These concepts are Fully-Connected -, Convolutional - and Recurrent neural
networks (FCNN, CNN, RNN), with special care to vector embeddings, repre-
sentation learning and Long Short Term Memory (LSTM) cells.
In the next section these concepts will be explained in more detail.

3 Basic concepts of feed forward neural networks

3.1 FCNN

Neural networks are a class of models that are constructed out of layers. The
size of the input and output are of fixed size, specific for the task. The number
of hidden layers and neurons in it are so called hyperparameters. It means that
they have to be chosen before one can use the network for training and making
predictions. There are many heuristics for choosing the right one and also for
optimizing them. Each neuron consists of a weight matrix and a bias and is
connected to every neuron of the next layer. A visualization of this can seen in
Figure 1. Every neuron performs the following calculation,

Figure 1: The rough structure of a FCNN
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with i being the index for the layer and j for the neuron. w and b stands
for weight and bias, z for the output of the neuron (it might be one of the
neurons that contributes to the input of the next neuron or the output of the
entire network) and x the input of the neuron. So we concatenate many affine
transformations after each other. For finalizing the network we need to apply

an non-linear function g(x) to the output of every neuron, o
[i]
i = g(z

[i]
i ). There

are many choices for that so called activation function. Some of them are listed
in Figure 2.

Figure 2: Some common activation functions

Before we can apply the network on some input data we first need to ini-
tialize the weights and biases.Usually this is done in a uniformly random fashion.

The procedure of training the neural network in a supervised way can be done
in four steps:

Step 1 : Take a batch of (labeled) training data

Labeled data means that we have some inputs with the outputs that we want
the network to map to. In our example that would be two audio files. One
might be a single speaker with little noise saying something (output) and the
same audio file just overlapped with some more speakers and noise (input).
Batch refers to a subset of these training examples. The two extreme cases
would be showing the network all examples at once or one at a time. Usually
something in between is done. There are multiple reasons for that, for example
computational efficiency or fluctuating gradients that might help overcome local
minima, but this goes too far for this elaboration.
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Step 2 : Perform forward propagation to obtain the corresponding
loss

Once the number and sizes of the layers (including input and output layer) and
activation functions have been chosen and the weights and biases initialized we
can apply the network on some data. This procedure is called forward prop-
agation, since information propagates forward through the network. Since the
math is clear now, multiplication/addition and applying non-linear functions,
we will obtain some output. However, without any meaning or knowledge yet.
So in order to improve the predictions of the network we need a measure for how
well it performed to be able to compare its result with the label (what we think
is true). This function is called loss function L(z, y), with z being the output of
the network and y the label. There are multiple possibilities for choosing one.
This depends on the input, output and on what aspect of it to take special care
about. We will talk later about which one was chosen in [4].

Step 3 : Backpropagate the loss to get the gradients

The process of learning is associated with updating the weights and biases such
that the networks reproduces the training data (so the data we apply on the
network and have the solution to). The goal is than to feed unseen data and
calculate predictions. So the hope is that the network generalizes and learns
the distribution describing the data, not just learns the training data by heart.
Backpropagation is how we adjust our network parameters and it is based on a
gradient method. This means we optimize (minimize) our loss function by ad-
justing the parameters of the network based on its derivative at that (data)point.
Hence the name gradient descent.

Step 4 : Use the gradients to update the weights of the network

The calculated gradients can then be used to update the weights like this:

w ← w − α · ∂L(z, y)
∂w

(2)

α is another hyperparameter to choose before training. Note that gradient
decent is not the only optimization algorithm one can use for training a neural
network, but the only one presented here.

3.2 CNN and Representation learning

CNNs are a special case of feed forward neural networks: Having sequential lay-
ers, connected neurons, non-linearities, forward propagation for applying and
backpropagation for training stays the same. We now change the calculation
inside the neuron and the way they are connected. Instead of an affine trans-
formation, here we apply discrete convolutions with a collection of learnable
parameters, the so called filters or kernels. And instead of connecting them all
together, we only have sparse and local connections. Vividly speaking, we use
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the kernels to ’scan’ through the input and ’search’ for features. A picture of
this is in Figure 3. This additional structure results in additional hyperparam-

Figure 3: Visualisation of a convolution. A filter scans through an imput array

eters we have to choose before training, like the kernel size, number of filters
or dilation rate. The dilation rate describes, roughly speaking, the holes in the
filers, so how many blind spots there are ’inside’ the image. A visual example
for this, can be seen in Figure 4. Originally this technique was developed for
imagine classification , so used on 2D data. In our case we will apply it on the
spectrum of the noisy data, which is also an image.
However, instead of using it for classification (categorical output) we will use
it here to learn a compact representation (continuous output) of the spectrum.
Similar to chroma features1 that compresses the possibility to represent fre-
quencies between roughly 20 and 20.000Hz in twelve containers representing
the musical tone of it: {C,C#, ..., B}. In the case of the CNN, however, the
resulting features were fitted by the learning algorithm, so there is no human
intuition to it. We can only evaluate the output. Still, it has many benefits to
use that technique. We will later see, how we will use that compressed repre-
sentation of the spectrum.

1For a clear introduction of that concept check: ”Fundamentals of Music Processing” by
Meinard Mueller, chapter 3.2.1
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Figure 4: Visualisation of a convolution. A filter scans through an input array

3.3 RNN; LSTM

In RNNs we have another special case of neural networks. In a FCNN there is
no information transmitted when the network is applied on two different data
points. RNNs differ from that, they additionally provides the network with a
hidden state that is feed back into the network. This allows the network to have
in general sequential input and output. This is perfect for our application, since
an audio file is sequential, so it does matter at which time a certain feature
appears.
When studying RNNs one main problem one faces is that gradients vanish or
explode, since the same parts or the network appear many times in the back-
propagation process. One particular way of dealing with these gradients is a
special architecture called LSTM. This is the one used in [1] and thus explained
now in some more detail:

A LSTM Network consists of the concatenation of multiple cells, the LSTM
cells. They all inherit the same structure, which can be seen in Figure 5. It
consists of three gates (forget, input, output) and its (cell) state.
The cell state behaves like the memory of the network with the ability to retain
information through time. The gates shape the information flow going into the
next hidden state and cell state. Each gate in 5 contains learnable parameters,
again in the form of weight matrices. The intuition of the gates is the following:
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Figure 5: The schematic of a LSTM cell (for our special case of the input
consisting of two components. The output of the convolution block r and the
speaker encoder ej)

the forget gate regulates how much of the last cell state contributes to the next.
The input gate decides which information is updated and stored in the cell state.
And the output gate decides witch part of the cell state is transferred to the
next hidden state.
The main paper, however, customizes these LSTM cell structure a bit. More
about that in the section called ”Modfications made by [4]”
In [5] they also test the performance of so called bidirectional LSTMs. This
improves the long term memory and consider information from future and past.
Further details on that technique are beyond the scope of this document.

3.4 vector embeddings

The last ’basic’ concept we need to introduce is the concept of vector embed-
dings. Here is just intuition given instead of mathematical descriptions.
The goal of embeddings is that we want to encode data in a representation that
’similar’ data points are close to each other. Closeness in this case means a dis-
tance measure on vector spaces, hence we are talking about vector embeddings.
So what is meant with similar then?
An easy example for a handcrafted embedding might be sorting people by their
age in a line. This would represent one (human understandable) feature, namely
the age, where people with similar age are close to each other relative to others
with very different age. The other extreme would be a one-hot representation,
where there is no relation. One-hot means, that every data point gets its own
dimension in a vector space. When choosing the scalar product as a similarity
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measure, we would get 0 correlation between all entities.
One can imagine now that by forcing a model to use less and less dimensions to
represent the data points some points get closer to each other than others. The
hope is than that data points with similar features are close to each other. A
practical way to find such feature embeddings is to just interpret the outputs of
a hidden layer of dimension d as a vector embedding of a d dimensional vector
space.

4 Baseline Approach

In the introduction of [4] the authors state that their work is an extension of
(Voice Filter)[5]. So it is convenient to first present the baseline approach (this
section) and than show what modifications have been made (next section).

In Figure 6 we can see the network architecture of it. First 8 CNN layers

Figure 6: Network architecture of both papers compared. (In the last row the
[8] is equivalent to [5] here)

reshaping the spectrum followed by a LSTM network consisting of 400 cells fin-
ished by two layers of FCNNs.
We have two separate networks here working together, the Speaker Encoder
LSTM and the VoiceFilter.

The Speaker Encoder LSTM converts the reference audio to a vector em-
bedding version of it, here called d-vector. The embedding only goes into the
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LSTM not the CNNs of our VoiceFilter network. This makes sense because we
assume that the embedding is already in a compact form and has to be treated
in a different way than the noisy input data. The Encoder is trained separately
before the VoiceFilter network. All this is captured in Figure 7
The data is generated by two freely available data sets, LibriSpeech and VCTK.

Figure 7: The entire workflow of the VoiceFilter network

From them we create a triplet of training data: reference, clean and noisy audio.
The noisy or mixture audio exactly contains two speakers.

Results of [5]

To understand the results we first explain our objectives and the evaluation
measures.
Since the motivation of speaker extraction is improving speech recognition we
aim for a network that improves performance in noisy situations and doesn’t
make performance on already well separated data worse. For that reason we
care about the word error rate (WER), which captures the ratio of correctly
recognized words. We compare clean and noisy WER before and after applying
VoiceFilter.
Furthermore, we evaluate the source distortion ratio (SDR) which is a typical
measure for source separation that describes the ratio between the energy of the
target signal and the energy of the errors.
The results can be seen in 8.
In Table 2 we see significant improvements of the noisy WER while the clean
WER impairs only by a bit. So the model (especially in the case of bi-LSTM)
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Figure 8: Results of the VoiceFilter network

does what is expected. Table 3 shows two things. First, the VCTK dataset
is to small for achieving a decent noisy WER. When trained on LibriSpeech
but evaluated on VCTM, we improve again. So the model generalizes between
datasets. Second, the clean WER even improves when trained on LibriSpeech
and evaluated on VCTK. So, even if it was not told to do that explicitly, the
network improves on the audibility of the data. In Table 4 we further see an
indication for the capability of the system to extract the signal of interest. Here
we compare the SDR in dB and observe that the network improves on that
quantity as well.
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5 Modifications made by [4]

There are two main differences to the baseline approach here: a customization
of the LSTM cells and the additional use of another evaluation measure.
The LSTM cell is modified in the simple way that we now set the weights that
decide the contribution of the convolved spectrum going into the forget gate of
the LSTM cells, is set to zero. It can be intuitively understood in the way that
the LSTM cell is supposed to learn to retain information related to the target
speaker and disregarding information unrelated to the target speaker.
Furthermore, in [4] they do not evaluate WER, but perceptual evaluation of
speech quality (PESQ). This is a standard measure for how well humans might
understand an audio signal. Simple metrics like the SNR, have proven to be
ineffective at predicting user experience. One reason for this is that SNR for
example does not differentiate between audible and inaudible distortions. PESQ
is a algorithmic estimation of the mean opinion score (MOS) which is a value
determined by humans. 1 (worst) means ’no communication possible’ and 5
(best) means ’easily understandable’
Also they change the number of neurons in the LSTM and FCNN. Details can
be seen in Figure 6.

Results of [4]

The results are depicted in Figure 9. One can clearly see the slight improvement
of the modifications made. In table there also appear the names PLC and SI-
SNR which are the names of the used loss functions. This will not be explained
in more detail.

Figure 9: Results of the modified VoiceFilter using custom LSMT cells

6 Conclusion

The proposed modifications of the VoiceFilter baseline approach show some
slight improvements so it suggests that their attempt to improve the hyperpa-
rameters was a success. Unfortunately they didn’t compare the WER so it is
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not clear if this will bring improvements for practical applications.
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